<|ll

| LL
@

z/Architecture

Principles of Operation

SA22-7832-06

<|ll

| LL
@

z/Architecture

Principles of Operation

SA22-7832-06

—— Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xvii.

—— Softcopy Note:

The reader should be aware of the fact that this publication contains many symbols, such as superscripts, that may not display
correctly with any given hardware or software. The definitive version of this publication is the hardcopy version.

| Seventh Edition (February, 2008)

| This edition obsoletes and replaces z/Architecture Principles of Operation, SA22-7832-05.

This publication is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or
implied, about its completeness or accuracy. The information in this publication is current as of its publication date but is subject to
change without notice.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA

Mail Station P384

2455 South Road

Poughkeepsie, N.Y., 12601-5400

United States of America

FAX (United States and Canada): 1-845-432-9405

FAX (Other Countries): Your International Access Code + 1-845-432-9405
IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

Internet e-mail: mhvrcfs @us.ibm.com

World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webgs.html

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

| © Copyright International Business Machines Corporation 1990-2008. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents
Noticescviiinn.. Xix
Trademarks i XiX
Prefacecovnnt. XXi
Size and Number Notation. XXii
Bytes, Characters, and Codes. XXiii
Other Publications XXiii
Summary of Changes in Seventh Edition XXiii
Summary of Changes in Sixth Edition......... XXV
Summary of Changes in Fifth Edition XXVii
Summary of Changes in Fourth Edition. XXiX
Summary of Changes in Third Edition. XXXi
Summary of Changes in Second Edition. XXXii
Chapter 1, Introduction............ 1-1
Highlights of Original z/Architecture 1-1
General Instructions for 64-Bit Integers. 1-2
Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-5
Modal Instructions 1-5
Effects on Bits 0-31 of a General Register . 1-5
Input/Output. 1-5
Additions to z/Architecture. 1-7
ASN-and-LX-Reuse Facility. 1-7
Compare-and-Swap-and-Store Facility 1-7
Compare-and-Swap-and-Store Facility 2 1-7
Conditional-SSKE Facility 1-7
Configuration-Topology Facility 1-7
DAT-Enhancement Facility 1. 1-7
DAT-Enhancement Facility 2. 1-8
Decimal-Floating-Point Facility 1-8
Decimal-Floating-Point-Rounding Facility 1-8
Enhanced-DAT Facility 1-8
ETF2-Enhancement Facility 1-9
ETF3-Enhancement Facility 1-9
Execute-Extensions Facility. 1-9
Extended-Immediate Facility 1-9
Extended-1/0-Measurement-Block Facility ... 1-9

Extended-1/0O-Measurement-Word Facility .. 1-10

Extended-Translation Facility 2. 1-10
Extended-Translation Facility 3........... 1-10
Extract-CPU-Time Facility 1-10
Floating-Point-Support-Sign- Handling Facility1-10
FPR-GR-Transfer Facility 1-11
General-Instructions-Extension Facility 1-11
HFP Multiply-and-Add/Subtract Facility. 1-11
HFP-Unnormalized-Extensions Facility 1-11

© Copyright IBM Corp. 1990-2008

IEEE-Exception-Simulation Facility. 1-11

List-Directed Initial Program Load. 1-12
Long-Displacement Facility. 1-12
Message-Security Assist. 1-12
Message-Security-Assist Extension 1. 1-12
Message-Security-Assist Extension 2. 1-12
Modified CCW Indirect Data Addressing
Facility. 1-13
Move-With-Optional-Specifications Facility. . . 1-13
Multiple-Subchannel-Set Facility. 1-13
Parsing-Enhancement Facility 1-13
PER-3 Facility: 1-14
PFPO Facility 1-14
Restore-Subchannel Facility. 1-14
Server-Time-Protocol Facility:. 1-14
Store-Clock-Fast Facility. 1-14
Store-Facility-List-Extended Facility:. 1-14
TOD-Clock-Steering Facility 1-14
The ESA/390Base. 1-15
The ESA/370 and 370-XABase 1-20
System Program. 1-22
Compatibility 1-22

Compatibility among z/Architecture Systems . 1-22
Compatibility between z/Architecture and

ESA/B90 1-22
Control-Program Compatibility 1-22
Problem-State Compatibility 1-22

Availability. 1-23
Chapter 2, Organization............ 2-1
Main Storage i 2-2
Expanded Storage, 2-2
CPU .. 2-2
PSW . 2-3
GeneralRegisters. 2-3
Floating-Point Registers 2-3
Floating-Point-Control Register. 2-3
Control Registers 2-5
AccessRegisters 2-5
Cryptographic Facility 2-5
External Time Reference 2-5
VO . 2-5
Channel Subsystem 2-5
ChannelPaths 2-6
I/O Devices and Control Units. 2-6
Operator Facilities. 2-6
Chapter 3,Storage 3-1
Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries. 3-3
Address Types and Formats. 3-4
Address Types 3-4

iii

Absolute Address. 3-4

Real Address 3-4
Virtual Address. 3-5
Primary Virtual Address 3-5
Secondary Virtual Address. 3-5
AR-Specified Virtual Address. 3-5
Home Virtual Address 3-5
Logical Address 3-5
Instruction Address. 3-5
Effective Address 3-5
Address Size and Wraparound 3-5
Address Wraparound 3-6
StorageKey........ ... i 3-8
Protection. 3-10
Key-Controlled Protection 3-10
Storage-Protection-Override Control 3-11
Fetch-Protection-Override Control 3-12
Access-List-Controlled Protection 3-12
DAT Protection. 3-12
Low-Address Protection. 3-13
Suppression on Protection. 3-14
Enhanced Suppression on Protection 3-15
Reference Recording. 3-16
Change Recording. 3-16
Change-Recording Override 3-17
Prefixing. i 3-17
Address Spaces. 3-18
Changing to Different Address Spaces ... 3-19
Address-Space Number. 3-19

ASN-Second-Table-Entry Sequence Number 3-20
ASN-Second-Table-Entry Instance Number and

ASNReuse 3-21
ASN Translation. 3-26
ASN-Translation Controls 3-26
Control Register14 3-26
ASN-Translation Tables. 3-27
ASN-First-Table Entries 3-27
ASN-Second-Table Entries 3-27
ASN-Translation Process. 3-29
ASN-First-Table Lookup. 3-29
ASN-Second-Table Lookup 3-30
Recognition of Exceptions during ASN
Translation........................ 3-31
ASN Authorization 3-31
ASN-Authorization Controls 3-31
Control Register4 3-31
ASN-Second-Table Entry. 3-31
Authority-Table Entries. 3-31
ASN-Authorization Process 3-32
Authority-Table Lookup 3-32
Recognition of Exceptions during ASN
Authorization 3-33
Dynamic Address Translation 3-34
Translation Control. 3-36

iV z/Architecture Principles of Operation

TranslationModes. 3-36
Control Register0 3-36
Control Register1 3-37
Control Register7 3-39
Control Register13 3-39
Translation Tables. 3-40
Region-Table Entries. 3-40
Segment-Table Entries 3-42
Page-Table Entries 3-44
Translation Process. 3-44
Inspection of Real-Space Control 3-46

Inspection of Designation-Type Control . . .3-46
Lookup in a Table Designated by an Address-

Space-Control Element............... 3-48
Lookup in a Table Designated by a Region-
TableEntry 3-50
Page-Table Lookup 3-51
Formation of the Real and Absolute
Addresses, 3-52
Recognition of Exceptions during
Translation. 3-52
Translation-Lookaside Buffer 3-52
TLB Structure 3-53
Formation of TLB Entries. 3-53
Useof TLBEntries 3-54
Modification of Translation Tables........ 3-55
Address Summary. 3-58
Addresses Translated 3-58
Handling of Addresses 3-58
Assigned Storage Locations 3-58
Chapter4,Control................ 4-1
Stopped, Operating, Load, and Check-Stop
States 4-1
Stopped State 4-2
OperatingState. 4-2
LoadState.......... ... i 4-2
Check-Stop State 4-3
Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers. 4-7
Tracingo 4-9
Control-Register Allocation 4-11
TraceEntries. 4-12
Operation., 4-22
Program-Event Recording. 4-23
PER Instruction-Fetching Nullification. 4-23
Control-Register Allocation and Address-Space-
ControlElement. 4-23
Operation., 4-25
Identification of Cause. 4-26
Priority of Indication................... 4-28
Storage-Area Designation. 4-30

PEREvents.......... 4-30
Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32

Indication of PER Events Concurrently with Other

Interruption Conditions 4-32

Breaking-Event-Address Recording 4-35
Breaking-Event-Address Register 4-36
Execution-Break Instructions. 4-36

TiMming 4-37

Time-of-Day Clock. 4-37
Format.......... 4-37
States. 4-37
ChangesinClock State. 4-38
Setting and Inspecting the Clock.. 4-39
TOD Programmable Register 4-40

TOD-Clock Synchronization 4-42
TimingMode 4-42
TimingState. 4-43
STP Clock Source State 4-43

TOD-Clock Steering. 4-43
TOD-Clock Steering Overview. 4-44
TOD-Offset-Update Events 4-46
Episodes 4-46
TOD-Clock-Steering Registers 4-46

Clock Comparator 4-47

CPUTImMer. ... 4-48

Externally Initiated Functions. 4-49

Resets......... . i 4-49
CPUReset............. ... 4-52
Initial CPUReset. 4-53
Subsystem Reset. 4-53
ClearReset 4-53
Power-OnReset 4-54

Initial Program Loading 4-55
CCW-Type IPL.......... 4-55

Store Status. L. 4-55

Multiprocessing oL 4-56
Shared Main Storage. 4-56
CPU-Address Identification 4-56

CPU Signaling and Response. 4-57

Signal-ProcessorOrders 4-57

Conditions Determining Response 4-61
Conditions Precluding Interpretation of the

OrderCode 4-61
StatusBits oL 4-62
Facility Indications 4-65
Chapter 5, Program Execution...... 5-1
Instructions 5-2
Operands. i, 5-3

Instruction Formats 5-3

RegisterOperands 5-6

Immediate Operands. 5-6
Storage Operands. 5-7
Address Generation 5-8
Trimodal Addressing. 5-8
Sequential Instruction-Address Generation . . .5-8
Operand-Address Generation. 5-8
Formation of the Intermediate Value. 5-8
Formation of the Operand Address. 5-9
Branch-Address Generation 5-9
Formation of the Intermediate Value. 5-9
Formation of the Branch Address 5-10
Instruction Execution and Sequencing 5-10
DecisionMaking 5-11
LoopControl 5-11
Subroutine Linkage without the Linkage Stack5-11
Simple Branch Instructions 5-11
Other Linkage Instructions 5-12
Interruptions oL, 5-19
Types of Instruction Ending 5-19
Completion 5-19
Suppression 5-19
Nullification 5-20
Termination. 5-20
Interruptible Instructions 5-20
Point of Interruption. 5-20
Unitof Operation. 5-20
Execution of Interruptible Instructions. 5-20
Condition-Code Alternative to
Interruptibility. 5-21

Exceptions to Nullification and Suppression. . 5-22
Storage Change and Restoration for DAT-

Associated Access Exceptions 5-23
Modification of DAT-Table Entries 5-23
Trial Execution for Editing Instructions and

Translate Instruction 5-23

Authorization Mechanisms 5-24
Mode Requirements 5-24
Extraction-Authority Control 5-25
PSW-KeyMask. 5-25
Secondary-Space Control. 5-25
Subsystem-Linkage Control 5-25
ASN-Translation Control 5-25
Authorization Index 5-26
Instructions and Controls Related to ASN-and-

LXReuse i, 5-26

PC-Number Translation 5-30

PC-Number Translation Control 5-31
Control Register0 5-31
Control Register5. 5-31
PC-Number Translation Tables 5-32
Linkage-Table Entries. 5-32
Linkage-First-Table Entries. 5-33
Linkage-Second-Table Entries 5-33

Entry-Table Entries. 5-33
Table Summary 5-35
PC-Number-Translation Process 5-35
Obtaining the Linkage-Table or Linkage-First-
Table Designation 5-39
Linkage-Table Lookup 5-39
Linkage-First-Table Lookup 5-39
Linkage-Second-Table Lookup 5-40
Linkage-Second-Table-Entry-Sequence-
Number Comparison 5-40
Entry-Table Lookup 5-40
Recognition of Exceptions during PC-Number
Translation........................ 5-41
Home Address Space 5-41
Access-Register Introduction. 5-42
Summary 5-42
Access-Register Functions 5-43
Access-Register-Specified Address
Spaces. 5-43
Access-Register Instructions 5-49
Access-Register Translation 5-50
Access-Register-Translation Control 5-50
Control Register2 5-50
Control Register5 5-50
Control Register8 5-51
Access Registers 5-51
Access-Register-Translation Tables 5-52
Dispatchable-Unit Control Table and Access-
List Designations 5-52
Access-ListEntries. 5-53
ASN-Second-Table Entries 5-54
Access-Register-Translation Process 5-55

Selecting the Access-List-Entry Token. . .. 5-58
Obtaining the Primary or Secondary Address-
Space-Control Element 5-58
Selecting the Access-List-Entry Token. . .. 5-58
Obtaining the Primary or Secondary Address-

Space-Control Element 5-58
Checking the First Byte of the ALET 5-58
Obtaining the Effective Access-List

Designation 5-58
Access-ListLookup 5-58

Locating the ASN-Second-Table Entry ... 5-59
Authorizing the Use of the Access-List

Entry.o 5-59
Checking for Access-List-Controlled
Protection......................... 5-60
Obtaining the Address-Space-Control Element
from the ASN-Second-Table Entry. 5-60
Recognition of Exceptions during Access-
Register Translation. 5-60
ART-Lookaside Buffer 5-60
ALB Structure. 5-60
Formation of ALB Entries.............. 5-61

vi z/Architecture Principles of Operation

Use of ALBEntries 5-61

Modification of ART Tables 5-62
Subspace Groups i 5-62
Subspace-Group Tables 5-62
Subspace-Group Dispatchable-Unit Control
Table. 5-62
Subspace-Group ASN-Second-Table
Entries......... L 5-64
Subspace-Replacement Operations 5-66
Linkage-Stack Introduction 5-66
Summary. ... 5-67
Linkage-Stack Functions. 5-67
Transferring Program Control 5-67
Branching Using the Linkage Stack. 5-69
Adding and Retrieving Information 5-70
Testing Authorization. 5-70
Program-Problem Analysis 5-71
Linkage-Stack Entry-Table Entries 5-71
Linkage-Stack Operations. 5-72
Linkage-Stack-Operations Control 5-74
Control Register0 5-74
Control Register15 5-74
Linkage Stack, 5-75
Entry Descriptors. 5-75
Header Entries. 5-76
TrailerEntries 5-77
StateEntries 5-77
Stacking Process. 5-80
Locating Space fora New Entry 5-80
Formingthe NewEntry 5-81
Updating the CurrentEntry 5-82
Updating Control Register 15 5-82
Recognition of Exceptions during the Stacking
Process 5-82
Unstacking Process. 5-82
Locating the Current Entry and Processing a
HeaderEntry....................... 5-83
Checking fora State Entry. 5-84
Restoring Information 5-84
Updating the Preceding Entry 5-85
Updating Control Register 15 5-85
Recognition of Exceptions during the
Unstacking Process. 5-85
Sequence of Storage References............ 5-85
Conceptual Sequence. 5-85
Overlapped Operation of Instruction
Execution.............. 5-86
Divisible Instruction Execution. 5-86
Interlocks for Virtual-Storage References5-86
Interlocks between Instructions. 5-87
Interlocks within a Single Instruction 5-87
Instruction Fetching. 5-89
ART-Table and DAT-Table Fetches 5-90
Storage-Key Accesses 5-91

Storage-Operand References 5-93
Storage-Operand Fetch References 5-93
Storage-Operand Store References 5-93
Storage-Operand Update References. ... 5-93

Storage-Operand Consistency 5-95
Single-Access References. 5-95
Multiple-Access References 5-95
Block-Concurrent References 5-96
Consistency Specification 5-96

Relation between Operand Accesses 5-98

Other Storage References. 5-98

Relation between Storage-Key Accesses . .. 5-98

Serialization. 5-99
CPU Serialization. 5-99
Channel-Program Serialization 5-100

Chapter 6, Interruptions 6-1

Interruption Action 6-2
InterruptionCode. 6-4
Enabling and Disabling 6-5

Handling of Floating Interruption Conditions . . 6-6

Instruction-Length Code 6-6
ZeroILC. 6-6
ILC on Instruction-Fetching Exceptions. ... 6-7

Exceptions Associated withthe PSW 6-8
Early Exception Recognition 6-8
Late Exception Recognition. 6-9

External Interruption 6-9

Clock Comparator 6-10

CPUTImer. ... i 6-10

Emergency Signal 6-11

ExternalCall 6-11

InterruptKey 6-11

Malfunction Alert 6-11

ServiceSignal L. 6-12

TimingAlert 6-12
ETR-Timing-Alert Condition. 6-12
STP-Timing-Alert Condition. 6-12

I/O Interruption. 6-13

Machine-Check Interruption 6-13
Program Interruption 6-14

Data-Exception Code (DXC) 6-14

Priority of Program Interruptions for Data
Exceptions............. 6-14

Program-Interruption Conditions 6-16
Addressing Exception 6-16
AFX-Translation Exception 6-18
ALEN-Translation Exception 6-18
ALE-Sequence Exception 6-18
ALET-Specification Exception.......... 6-18
ASCE-Type Exception................ 6-19
ASTE-Instance Exception 6-19
ASTE-Sequence Exception............ 6-19

ASTE-Validity Exception.
ASX-Translation Exception.............
Crypto-Operation Exception
Data Exception
Decimal-Divide Exception.
Decimal-Overflow Exception.
Execute Exception
EX-Translation Exception..............
Extended-Authority Exception.
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
HFP-Divide Exception.
HFP-Exponent-Overflow Exception
HFP-Exponent-Underflow Exception
HFP-Significance Exception
HFP-Square-Root Exception.
LFX-Translation Exception
LSTE-Sequence Exception.
LSX-Translation Exception
LX-Translation Exception
Monitor Event
Operand Exception.
Operation Exception
Page-Translation Exception
PC-Translation-Specification Exception . . .
PEREvent.........
Primary-Authority Exception
Privileged-Operation Exception.
Protection Exception..................
Region-First-Translation Exception.
Region-Second-Translation Exception
Region-Third-Translation Exception
Secondary-Authority Exception.
Segment-Translation Exception
Space-SwitchEvent
Special-Operation Exception.
Specification Exception.
Stack-Empty Exception.
Stack-Full Exception.
Stack-Operation Exception.
Stack-Specification Exception.
Stack-Type Exception.
Trace-Table Exception
Translation-Specification Exception
Collective Program-Interruption Names
Recognition of Access Exceptions
Multiple Program-Interruption Conditions
Access Exceptions,
ASN-Translation Exceptions.
Subspace-Replacement Exceptions..
Trace Exceptions
Restart Interruption.
Supervisor-Call Interruption
Priority of Interruptions

Vii

Chapter 7, General Instructions. 7-1

DataFormat............ 7-3
Binary-Integer Representation. 7-3
Binary Arithmetic 7-4
Signed Binary Arithmetic 7-5
Addition and Subtraction 7-5
Fixed-Point Overflow 7-5
Unsigned Binary Arithmetic 7-5
Signed and Logical Comparison 7-6
Instructions. 7-6
ADD .. 7-20
ADD IMMEDIATE.t 7-21
ADDHALFWORD 7-22
ADD HALFWORD IMMEDIATE. 7-22
ADDLOGICAL.o 7-23
ADD LOGICAL IMMEDIATE 7-23
ADD LOGICALWITHCARRY 7-23
ADD LOGICAL WITH SIGNED IMMEDIATE. 7-24
AND ..o 7-25
AND IMMEDIATE.ot 7-26
BRANCHANDLINK 7-26
BRANCHAND SAVE. 7-27
BRANCH AND SAVE AND SET MODE 7-28
BRANCHAND SETMODE 7-29
BRANCH ON CONDITION 7-29
BRANCHONCOUNT 7-30
BRANCHON INDEXHIGH 7-31
BRANCH ON INDEX LOW OR EQUAL. 7-31
BRANCH RELATIVE AND SAVE 7-32
BRANCH RELATIVE AND SAVE LONG. ... 7-32
BRANCH RELATIVE ON CONDITION 7-33
BRANCH RELATIVE ON CONDITION LONG 7-33
BRANCH RELATIVEON COUNT 7-34
BRANCH RELATIVE ON INDEX HIGH. 7-34
BRANCH RELATIVE ON INDEX LOW OR
EQUAL. 7-34
CHECKSUM. 7-35
CIPHER MESSAGE (KM) 7-39
CIPHER MESSAGE WITH CHAINING (KMC) 7-39
KM-Query (KM Function Code 0). 7-43
KM-DEA (KM Function Code 1)......... 7-43

KM-TDEA-128 (KM Function Code 2) 7-44
KM-TDEA-192 (KM Function Code 3) 7-45

KM-AES-128 (KM Function Code 18) 7-46
KM-AES-192 (KM Function Code 19) 7-46
KM-AES-256 (KM Function Code 20) 7-47
KMC-Query (KMC Function Code 0) 7-48
KMC-DEA (KMC Function Code 1) 7-48

KMC-TDEA-128 (KMC Function Code 2). . 7-49
KMC-TDEA-192 (KMC Function Code 3). . 7-50
KMC-AES-128 (KMC Function Code 18).. 7-51
KMC-AES-192 (KMC Function Code 19).. 7-52
KMC-AES-256 (KMC Function Code 20).. 7-53
KMC-PRNG (KMC Function Code 67). ... 7-54

viii z/Architecture Principles of Operation

COMPARE 7-56
COMPARE IMMEDIATE 7-56
COMPARE RELATIVELONG. 7-56
COMPARE ANDBRANCH 7-57
COMPARE AND BRANCH RELATIVE. 7-57

COMPARE IMMEDIATE AND BRANCH. 7-57
COMPARE IMMEDIATE AND BRANCH

RELATIVE.o 7-58
COMPARE AND FORM CODEWORD. 7-59
COMPARE ANDSWAP 7-66
COMPARE DOUBLE AND SWAP 7-66
COMPARE AND SWAP AND STORE 7-68
COMPAREAND TRAP.................. 7-71
COMPARE IMMEDIATE AND TRAP 7-71
COMPARE HALFWORD. 7-72
COMPARE HALFWORD IMMEDIATE 7-72
COMPARE HALFWORD RELATIVE LONG. .7-72
COMPARE LOGICAL 7-73
COMPARE LOGICAL IMMEDIATE. 7-74
COMPARE LOGICAL RELATIVE LONG7-74
COMPARE LOGICAL AND BRANCH. 7-75
COMPARE LOGICAL AND BRANCH

RELATIVE. o 7-75
COMPARE LOGICAL IMMEDIATE AND

BRANCH.......... 7-76
COMPARE LOGICAL IMMEDIATE AND BRANCH

RELATIVE. o 7-76
COMPARE LOGICAL AND TRAP. 7-77
COMPARE LOGICAL IMMEDIATE AND

TRAP. ... 7-77
COMPARE LOGICAL CHARACTERS UNDER

MASK 7-78
COMPARE LOGICALLONG. 7-78

COMPARE LOGICAL LONG EXTENDED . . .7-81
COMPARE LOGICAL LONG UNICODE. 7-83

COMPARE LOGICAL STRING 7-86
COMPARE UNTIL SUBSTRING EQUAL7-87
COMPRESSION CALLoveaen 7-90
COMPUTE INTERMEDIATE MESSAGE

DIGEST (KIMD). . .+ e v eveeeeeeeean . 7-102
COMPUTE LAST MESSAGE DIGEST

(KLMD) .« v evee e 7-102

KIMD-Query (KIMD Function Code 0)....7-105
KIMD-SHA-1 (KIMD Function Code 1) ...7-105
KIMD-SHA-256 (KIMD Function Code 2) .7-106
KIMD-SHA-512 (KIMD Function Code 3) .7-106
KLMD-Query (KLMD Function Code 0). . .7-106
KLMD-SHA-1 (KLMD Function Code 1) . .7-107
KLMD-SHA-256 (KLMD Function Code 2) 7-108
KLMD-SHA-512 (KLMD Function Code 3) 7-110
COMPUTE MESSAGE AUTHENTICATION

CODE(KMAC) ... 7-113
KMAC-Query (Function Code 0) 7-116
KMAC-DEA (Function Code 1) 7-116

KMAC-TDEA-128 (Function Code 2). ... 7-117
KMAC-TDEA-192 (Function Code 3). ... 7-117

CONVERT TOBINARY................ 7-119
CONVERT TODECIMAL 7-120
CONVERT UTF-16 TOUTF-32.......... 7-120
CONVERT UTF-16 TOUTF-8........... 7-123
CONVERT UNICODE TOUTF-8 7-123
CONVERT UTF-32 TOUTF-16.......... 7-126
CONVERT UTF-32 TOUTF-8........... 7-129
CONVERT UTF-8 TOUTF-16........... 7-132
CONVERT UTF-8 TO UNICODE 7-132
CONVERT UTF-8 TOUTF-32........... 7-136
COPYACCESS. 7-140
DIVIDE. o it 7-140
DIVIDELOGICAL 7-141
DIVIDE SINGLE. 7-141
EXCLUSIVEOR 7-142
EXCLUSIVE OR IMMEDIATE. 7-143
EXECUTE 7-144
EXECUTE RELATIVELONG 7-144
EXTRACTACCESS 7-145
EXTRACT CACHE ATTRIBUTE 7-145
EXTRACTCPUTIME 7-146
EXTRACTPSW. 7-147
FIND LEFTMOSTONE................ 7-147
INSERT CHARACTER 7-148
INSERT CHARACTERS UNDER MASK. .. 7-148
INSERT IMMEDIATE. 7-149
INSERT PROGRAM MASK. 7-150
LOAD. 7-150
LOAD IMMEDIATE 7-150
LOAD RELATIVELONG............... 7-150
LOAD ACCESS MULTIPLE. 7-151
LOAD ADDRESS. 7-152
LOAD ADDRESS EXTENDED 7-152
LOAD ADDRESS RELATIVE LONG. 7-153
LOADANDTEST 7-153
LOADBYTE......... 7-154
LOAD COMPLEMENT. 7-154
LOADHALFWORD 7-155
LOAD HALFWORD IMMEDIATE 7-155
LOAD HALFWORD RELATIVE LONG 7-155
LOADLOGICALoo... 7-156
LOAD LOGICAL RELATIVE LONG. 7-156
LOAD LOGICAL CHARACTER. 7-157
LOAD LOGICAL HALFWORD. 7-157
LOAD LOGICAL HALFWORD RELATIVE

LONG 7-157
LOAD LOGICAL IMMEDIATE 7-158
LOAD LOGICAL THIRTY ONE BITS. 7-158
LOAD MULTIPLE 7-159
LOAD MULTIPLE DISJOINT 7-159
LOAD MULTIPLEHIGH 7-160
LOADNEGATIVE 7-160

LOAD PAIR FROM QUADWORD 7-160

LOADPOSITIVE.t 7-161
LOADREVERSED.................... 7-161
MONITORCALL. 7-162
MOVE 7-163
MOVEINVERSE. 7-164
MOVELONG 7-164
MOVE LONG EXTENDED 7-168
MOVE LONG UNICODE. 7-171
MOVENUMERICS. 7-174
MOVESTRING. 7-175
MOVEWITHOFFSET 7-176
MOVEZONES 7177
MULTIPLY ... e 7177
MULTIPLY HALFWORD. 7-178
MULTIPLY HALFWORD IMMEDIATE 7-178
MULTIPLY LOGICAL 7-179
MULTIPLY SINGLE 7-179
MULTIPLY SINGLE IMMEDIATE. 7-180
OR. .. 7-180
ORIMMEDIATE 7-181
PACK ... 7-182
PACKASCIl 7-183
PACKUNICODE. 7-184
PERFORM LOCKED OPERATION 7-184

Function Codes 0-3 (Compare and Load). 7-189
Function Codes 4-7 (Compare and Swap) 7-189
Function Codes 8-11 (Double Compare and

SWap) .. 7-190
Function Codes 12-15 (Compare and
SwapandStore)................... 7-191
Function Codes 16-19 (Compare and
Swap and Double Store). 7-191
Function Codes 20-23 (Compare and
Swap and Triple Store) 7-192
PREFETCHDATA 7-198
PREFETCH DATA RELATIVE LONG 7-198
ROTATE LEFT SINGLE LOGICAL. 7-200

ROTATE THEN AND SELECTED BITS. .. .7-200
ROTATE THEN EXCLUSIVE OR SELECTED
BITS ... 7-200
ROTATE THEN OR SELECTED BITS. 7-200
ROTATE THEN INSERT SELECTED BITS . 7-202

SEARCHSTRING 7-203
SEARCH STRING UNICODE. 7-204
SETACCESS........ 7-205
SET ADDRESSING MODE 7-206
SET PROGRAMMASK 7-206
SHIFT LEFTDOUBLE 7-207
SHIFT LEFT DOUBLE LOGICAL 7-207
SHIFTLEFTSINGLE 7-208
SHIFT LEFT SINGLE LOGICAL. 7-209
SHIFT RIGHTDOUBLE 7-209
SHIFT RIGHT DOUBLE LOGICAL. 7-209

SHIFT RIGHT SINGLE LOGICAL 7-211
STORE. ... e 7-211
STORE RELATIVELONG.............. 7-211
STORE ACCESS MULTIPLE 7-212
STORE CHARACTER................. 7-212
STORE CHARACTERS UNDER MASK ... 7-212
STORECLOCK.......... ..., 7-213
STORECLOCKFAST................. 7-213
STORE CLOCK EXTENDED. 7-214
STORE FACILITY LIST EXTENDED. 7-216
STORE HALFWORD.................. 7-217
STORE HALFWORD RELATIVE LONG . . . 7-217
STORE MULTIPLE 7-218
STORE MULTIPLEHIGH 7-218
STORE PAIR TO QUADWORD. 7-218
STOREREVERSED 7-219
SUBTRACT ... 7-219
SUBTRACT HALFWORD 7-220
SUBTRACTLOGICAL. 7-221
SUBTRACT LOGICAL IMMEDIATE 7-221
SUBTRACT LOGICAL WITH BORROW . .. 7-222
SUPERVISORCALL 7-222
TEST ADDRESSING MODE 7-223
TESTANDSET............. ..., 7-223
TEST UNDER MASK (TEST UNDER MASK
HIGH, TEST UNDER MASK LOW) 7-223
TRANSLATE 7-225
TRANSLATEAND TEST............... 7-225
TRANSLATE AND TEST EXTENDED. 7-226
TRANSLATE AND TEST REVERSE
EXTENDED 7-226
TRANSLATE AND TEST REVERSE. 7-231
TRANSLATE EXTENDED 7-231
TRANSLATEONETOONE 7-234
TRANSLATEONETOTWO 7-234
TRANSLATETWO TOONE 7-234
TRANSLATETWO TOTWO............ 7-234
UNPACK i 7-238
UNPACKASCI ...l 7-239
UNPACKUNICODE. 7-240
UPDATETREE 7-241
Chapter 8, Decimal Instructions 8-1
Decimal-Number Formats 8-1
ZonedFormat 8-1
Packed-Decimal Formats. 8-1
Signed-Packed-Decimal Format 8-1
Unsigned-Packed-Decimal Format 8-2
DecimalCodes. 8-2
Decimal Operations 8-3
Decimal-Arithmetic Instructions 8-3
Editing Instructions. 8-4

X z/Architecture Principles of Operation

Execution of Decimal Instructions 8-4
Other Instructions for Decimal Operands 8-4
Decimal-Operand Data Exception........... 8-4
Instructions 8-5
ADDDECIMAL i 8-6
COMPAREDECIMAL 8-6
DIVIDEDECIMAL 8-7
EDIT .. 8-7
EDITANDMARK 8-10
MULTIPLY DECIMAL 8-11
SHIFT AND ROUND DECIMAL 8-12
SUBTRACTDECIMAL 8-13
TESTDECIMAL, 8-13
ZEROANDADD....... ..o 8-13

Chapter 9, Floating-Point Overview and

Support Instructions 9-1
SignBit ... 9-2
Finite Floating-Point Numbers. 9-2
Infinities 9-2

Not-A-Number (NaN). 9-2
Signalingand QuietNaNs............... 9-2
Payload 9-2
Propagationof NaNs. 9-3
DefaultQNaN 9-3

Hexadecimal-Floating-Point (HFP) 9-3

Binary Floating-Point (BFP). 9-3

Decimal Floating-Point (DFP) 9-4
Canonical DFPData 9-4

Comparison of Floating-Point Number

Representations 9-4
Floating-Point Number Ranges. 9-4
Equivalent Floating-Point Number
Representations 9-4
Effective Width. 9-7

Floating-Point Data in Storage 9-8

Registers AndControls 9-8

Floating-Point Registers 9-8

Additional Floating-Point (AFP) Registers. . .9-9
Valid Floating-Point-Register Designations. .9-9

Floating-Point-Control (FPC) Register. 9-9
IEEE MasksandFlags 9-10
FPCDXCByte............ccovvvin... 9-10
Operations on the FPC Register......... 9-10

AFP-Register-Control Bit. 9-10

IEEE Computational Operations 9-11

Intermediate Values 9-11
Precise Intermediate Value 9-11
Precision-Rounded Value 9-11
Denormalized Value 9-11
Functionally-Rounded Value 9-11
Rounded Intermediate Value. 9-11
ScaledValue........................ 9-12

Scale Factor (W) 9-12

Unsigned Scaling Exponent (o). 9-12
Signed Scaling Exponent () 9-12
IEEERounding 9-12
PermissibleSet 9-12
Selection of Candidates. 9-13
TieS oo 9-13
Voting Digit and Common-Rounding- Point
View. . ..o 9-13
Rounding Methods. 9-13
Explicit Rounding Methods 9-16
Summary of Rounding Action 9-16
IEEE Exceptions 9-16
Concurrent IEEE Exceptions. 9-17
IEEE Invalid Operation 9-17
IEEE Division-By-Zero................ 9-18
IEEEOverflow 9-18
IEEE Underflow 9-18
IEEEInexact 9-19
IEEE Same-Radix Format Conversion 9-21
IEEE Comparison 9-21
Condition Codes for IEEE Instructions 9-22
Instructions 9-22
CONVERTBFPTOHFP................ 9-24
CONVERTHFPTOBFP................ 9-25
COPYSIGN. i 9-27
EXTRACTFPC 9-27
LOAD. ... 9-27
LOAD COMPLEMENT. 9-28
LOADFPC. e 9-28
LOADFPCAND SIGNAL 9-29
LOAD FPRFROMGR. 9-30
LOADGRFROMFPR. 9-30
LOADNEGATIVE 9-30
LOADPOSITIVE 9-31
LOADZERO ... 9-31
PERFORM FLOATING-POINT OPERATION 9-31
General Register 0 (GRO) 9-32
ReturnCode 9-34
Sign Preservation 9-34
Preferred Quantum 9-34
NaN Conversion 9-35
Scaled Value and Signed Scaling Exponent (Q2)
forPFPO 9-35
HFPValues 9-35
HFP Overflow and Underflow for PFPO .. 9-35
IEEE Exceptions for PFPO 9-36
PFPO Action Figures 9-40
SET BFP ROUNDING MODE 9-40
SET DFP ROUNDING MODE............ 9-41
SETFPC ... i 9-41
SETFPCAND SIGNAL. 9-41
STORE ... 9-42
STOREFPC 9-42

Summary of All Floating-Point Instructions. 9-43

Chapter 10, Control Instructions ... 10-1

BRANCH AND SET AUTHORITY 10-6
BRANCH AND STACK 10-10
BRANCH IN SUBSPACE GROUP 10-12
COMPARE AND SWAP AND PURGE.. 10-17
DIAGNOSE............. 10-19
EXTRACT AND SET EXTENDED
AUTHORITY o 10-19
EXTRACT PRIMARYASN 10-19
EXTRACT PRIMARY ASN AND INSTANCE 10-20
EXTRACT SECONDARY ASN........... 10-20
EXTRACT SECONDARY ASN AND
INSTANCE i, 10-20
EXTRACT STACKED REGISTERS 10-21
EXTRACT STACKED STATE. 10-22
INSERT ADDRESS SPACE CONTROL. . ..10-24
INSERTPSWKEY 10-25
INSERT STORAGE KEY EXTENDED. 10-25
INSERT VIRTUAL STORAGE KEY 10-26
INVALIDATE DAT TABLE ENTRY 10-27
INVALIDATE PAGE TABLE ENTRY 10-31
LOAD ADDRESS SPACE PARAMETERS. . 10-32
LOADCONTROLcoviinn.. 10-42
LOAD PAGE-TABLE-ENTRY ADDRESS. . .10-42
LOADPSW. 10-45
LOAD PSW EXTENDED 10-46
LOAD REALADDRESS 10-47
LOAD USING REAL ADDRESS. 10-51
MODIFY STACKED STATE 10-51
MOVEPAGE 10-52
MOVE TO PRIMARY 10-54
MOVE TO SECONDARY 10-54
MOVE WITH DESTINATION KEY 10-56
MOVEWITHKEY. 10-57
MOVE WITH OPTIONAL SPECIFICATIONS10-58
MOVE WITH SOURCE KEY............. 10-61
PAGEIN.... 10-62
PAGEOUT 10-63
PERFORM FRAME MANAGEMENT
FUNCTION......... 10-64
PERFORM TIMING FACILITY FUNCTION .10-67
PERFORM TOPOLOGY FUNCTION.. 10-74
Operation of Function Codes0Oand 1....10-75
Operation of Function Code 2;: 10-75
PROGRAMCALL 10-75
PROGRAMRETURN.................. 10-88
PROGRAM TRANSFER................ 10-92
PROGRAM TRANSFER WITH INSTANCE . 10-92
PURGEALB........................ 10-101
PURGETLB........................ 10-101

RESET REFERENCE BIT EXTENDED . .. 10-101

Xi

RESUME PROGRAM 10-102
SET ADDRESS SPACE CONTROL 10-104
SET ADDRESS SPACE CONTROL FAST 10-104
SETCLOCK.t 10-105
SET CLOCK COMPARATOR 10-107
SET CLOCK PROGRAMMABLE FIELD .. 10-107
SETCPUTIMER 10-107
SETPREFIX e 10-107
SET PSW KEY FROM ADDRESS. 10-108
SET SECONDARY ASN 10-109
SET SECONDARY ASN WITH INSTANCE 10-109
SET STORAGE KEY EXTENDED. 10-114
SET SYSTEMMASK. 10-117
SIGNALPROCESSOR 10-117
STORE CLOCK COMPARATOR. 10-118
STORECONTROL 10-119
STORECPUADDRESS 10-119
STORECPUIDt 10-120
STORECPUTIMER 10-121
STORE FACILITYLIST 10-121
STOREPREFIX. 10-121
STORE REALADDRESS 10-122
STORE SYSTEM INFORMATION. 10-122

CPU Topology Overview 10-137

CPUSIackcoi e, 10-138
STORE THEN AND SYSTEM MASK 10-141
STORE THEN OR SYSTEM MASK. 10-141
STORE USING REAL ADDRESS 10-142
TESTACCESS 10-142
TESTBLOCK. ... 10-144
TESTPROTECTION 10-146
TRACE. 10-149
TRAP .. 10-150

Chapter 11, Machine-Check

Handling......................t. 11-1
Machine-Check Detection 11-2
Correction of Machine Malfunctions. 11-2
Error Checking and Correction. 11-2
CPURetry ... 11-2
Effectsof CPURetry 11-3
Checkpoint Synchronization. 11-3
Handling of Machine Checks during
Checkpoint Synchronization. 11-3
Checkpoint-Synchronization Operations .. 11-3
Checkpoint-Synchronization Action 11-4
Channel-Subsystem Recovery. 11-4
UnitDeletion. 11-4
Handling of Machine Checks 11-4
Validation. 11-5
Invalid CBC in Storage. 11-6
Programmed Validation of Storage 11-7
Invalid CBC in Storage Keys 11-7

xii z/Architecture Principles of Operation

Invalid CBC in Registers 11-8

Check-Stop State 11-9
System Check Stop. 11-10
Machine-Check Interruption 11-10
Exigent Conditions 11-10
Repressible Conditions 11-10
Interruption Action. 11-11
Point of Interruption. 11-13
Machine-Check-Interruption Code 11-13
Subclass 11-14
SystemDamage 11-14
Instruction-Processing Damage 11-15
System Recovery 11-15
Timing-Facility Damage. 11-15
External Damage. 11-16
Degradation. 11-16
Wamning.......... ... it 11-16
Channel Report Pending. 11-16
Service-Processor Damage. 11-16
Channel-Subsystem Damage 11-17
Subclass Modifiers 11-17
BackedUp......... 11-17
Delayed Access Exception 11-17
Ancillary Report. 11-17
Synchronous Machine-Check-Interruption
Conditions, 11-17
ProcessingBackup 11-17
Processing Damage 11-18
Storage Errors. L 11-18
Storage Error Uncorrected 11-18
Storage Error Corrected 11-18
Storage-Key Error Uncorrected. 11-19
Storage Degradation................. 11-19
Indirect Storage Error 11-19
Machine-Check Interruption-Code Validity
Bits ... 11-19
PSW-MWP Validity 11-20
PSW Mask and Key Validity 11-20
PSW Program-Mask and Condition-Code
Validity. 11-20
PSW-Instruction-Address Validity 11-20
Failing-Storage-Address Validity 11-20
External-Damage-Code Validity 11-20
Floating-Point-Register Validity 11-20
General-Register Validity. 11-20
Control-Register Validity 11-20
Storage Logical Validity. 11-20
Access-Register Validity 11-21

TOD-Programmable-Register Validity11-21
Floating-Point-Control-Register Validity . .11-21
CPU-Timer Validity 11-21
Clock-Comparator Validity. 11-21

Machine-Check Extended Interruption

Information 11-21

Register-Save Areas 11-21

External-Damage Code. 11-21
Failing-Storage Address 11-22
Handling of Machine-Check Conditions 11-23
Floating Interruption Conditions. 11-23
Floating Machine-Check-Interruption
Conditions 11-23
Floating I/O Interruptions 11-23
Machine-Check Masking. 11-23
Channel-Report-Pending Subclass Mask 11-24
Recovery Subclass Mask 11-24
Degradation Subclass Mask 11-24
External-Damage Subclass Mask 11-24
Warning Subclass Mask 11-24
Machine-Check Logout 11-24
Summary of Machine-Check Masking. 11-25
Chapter 12, Operator Facilities 12-1
Manual Operation 12-1
Basic Operator Facilities 12-1
Address-Compare Controls. 12-1
Alter-and-Display Controls. 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls 12-2
Check-Stop Indicator. 12-2
IMLControls 12-3
InterruptKey, 12-3
Load Indicator 12-3
Load-ClearKey 12-3
Load-Clear-List-DirectedKey 12-3
Load-NormalKey. 12-3
Load-with-DumpKey................... 12-3
Load-Unit-Address Controls 12-4
Manual Indicator 12-4
PowerControls 12-4
Rate Control. 12-4
RestartKey 12-4
StartKey 12-5
StopKey 12-5
Store-Status Key 12-5
System-Reset-ClearKey................ 12-5
System-Reset-NormalKey 12-5
Test Indicator. 12-5
TOD-Clock Control 12-6
Wait Indicator. 12-6
Multiprocessing Configurations 12-6
Chapter 13, I/O Overview. 13-1
Input/Output (I/0). o 13-1
The Channel Subsystem. 13-1
Subchannel Sets 13-2
Subchannels 13-2
Attachment of Input/Output Devices 13-3

ChannelPaths 13-3
ControlUnits. 13-4
/ODevices.ovvuiiiii. 13-4
I/OAddressingcoviiiiinn .. 13-5
Subchannel-Set Identifier. 13-5
Channel-Path Identifier. 13-5
Subchannel Number 13-5
Device Number. 13-5
Device Identifier 13-6
Execution of I/O Operations 13-6
Start-Function Initiation. 13-6
Path Management. 13-7
Channel-Program Execution. 13-7
Conclusion of /0 Operations 13-8
I/O Interruptions 13-9
Chapter 14, I/O Instructions 14-1
I/O-Instruction Formats. 14-1
I/O-Instruction Execution. 14-2
Serialization 14-2
Operand AcCeSSo ii i i i 14-2
ConditionCodecuv.. .. 14-2
Program Exceptions 14-2
Instructions 14-2
CANCEL SUBCHANNEL 14-4
CLEAR SUBCHANNEL 14-5
HALT SUBCHANNEL 14-6
MODIFY SUBCHANNEL 14-7
RESET CHANNELPATH................ 14-9
RESUME SUBCHANNEL............... 14-10
SET ADDRESSLIMIT 14-12
SET CHANNEL MONITOR. 14-13
START SUBCHANNEL. 14-15
STORE CHANNEL PATH STATUS 14-16
STORE CHANNEL REPORT WORD...... 14-17
STORE SUBCHANNEL 14-18
TEST PENDING INTERRUPTION 14-19
TEST SUBCHANNEL 14-20

Chapter 15, Basic I/0 Functions. ... 15-1

Control of Basic I/O Functions 15-1
Subchannel-Information Block 15-1
Path-Management-Control Word 15-2
Subchannel-Status Word 15-8
Model-Dependent Area/Measurement
Block Address. 15-8
Summary of Modifiable Fields. 15-9
Channel-Path Allegiance 15-11
Working Allegiance 15-11
Active Allegiance. 15-11
Dedicated Allegiance 15-12
Channel-Path Availability 15-12
Control-Unit Type 15-13

xiii

ClearFunction 15-13
Clear-Function Path Management. 15-13
Clear-Function Subchannel Modification . .. 15-14
Clear-Function Signaling and Completion . . 15-14

Halt Function 15-15
Halt-Function Path Management. 15-15
Halt-Function Signaling and Completion . .. 15-16

Start Function and Resume Function 15-18
Start-Function and Resume-Function Path

Management 15-18

Execution of I/O Operations. 15-20
BlockingofData...................... 15-21
Operation-Request Block. 15-21
Channel-CommandWord 15-26
CommandCode...................... 15-28
Designation of Storage Area 15-29
Chaining............coiiiiiii.. 15-30

DataChaining 15-31
Command Chaining 15-33
Skippingo 15-34
Program-Controlled Interruption. 15-34
CCW Indirect Data Addressing 15-35

Modified CCW Indirect Data Addressing . .. 15-37
Suspension of Channel-Program Execution 15-39

CommandsandFlags 15-41
Branching in Channel Programs 15-41

Transferin Channel 15-42
CommandRetry...................... 15-42

Concluding I/O Operations before Initiation. . . 15-43
Concluding I/O Operations during Initiation . . . 15-43

Immediate Conclusion of /0 Operations. 15-43
Concluding 1/0O Operations During Data

Transfer. 15-44
Channel-Path-Reset Function 15-45

Channel-Path-Reset-Function Signaling ... 15-45
Channel-Path-Reset-Function- Completion

Signaling 15-46
Chapter 16, I/O Interruptions 16-1
Interruption Conditions. 16-1

Intermediate Interruption Condition 16-3
Primary Interruption Condition............ 16-4
Secondary Interruption Condition. 16-4
Alert Interruption Condition 16-4
Priority of Interruptions. 16-4
Interruption Action 16-5
Interruption-Response Block 16-6
Subchannel-Status Word 16-6
SubchannelKey..................... 16-7
Suspend Control (S). 16-8
Extended-Status-Word Format (L)....... 16-8
Deferred Condition Code (CC).......... 16-8
Format(F) 16-10

XiV z/Architecture Principles of Operation

Prefetch(P) L. 16-10
Initial-Status-Interruption Control (1) 16-11
Address-Limit-Checking Control (A) 16-11
Suppress-Suspended Interruption (U). .. .16-11
Subchannel-Control Field 16-11
Zero ConditionCode (Z) 16-11
Extended Control (E). 16-11
Path Not Operational (N). 16-12
Function Control (FC) 16-12
Activity Control (AC) 16-13
Status Control (SC) 16-16
CCW-Address Field. 16-18
Device-Status Field 16-23
Subchannel-Status Field. 16-23
Program-Controlled Interruption 16-23
Incorrect Length. 16-23
Program Check 16-24
Protection Check.................... 16-27
Channel-Data Check................. 16-27
Channel-Control Check. 16-28
Interface-Control Check. 16-28
ChainingCheck. 16-29
CountField 16-30
Extended-Status Word 16-33
Extended-Status Format0 16-33
Subchannel Logout 16-33
Extended-ReportWord 16-37
Failing-Storage Address 16-39
Extended-Subchannel-Logout Descriptor
(ESLD). . ..o 16-39
Secondary-CCW Address 16-39
Extended-Status Format1 16-39
Extended-Status Format2 16-40
Extended-Status Format3 16-40
Extended-ControlWord. 16-41
Extended-MeasurementWord 16-42

Chapter 17, I/O Support Functions . 17-1

Channel-Subsystem Monitoring 17-1
Channel-Subsystem Timing 17-2
Channel-Subsystem Timer 17-2
Measurement-Block Update 17-2
MeasurementBlock. 17-3
Measurement-Block Format 17-7
Measurement-Block Origin 17-7
Measurement-Block Address 17-7
Measurement-Block Key 17-7
Measurement-Block Index. 17-7
Measurement-Block-Update Mode 17-7
Measurement-Block-Format Control 17-8
Measurement-Block-Update Enable 17-8
Control-Unit-Queuing Measurement 17-8
Control-Unit-Defer Time 17-8

Device-Active-Only Measurement. 17-9
Initial-Command-Response Measurement 17-9

Time-Interval-Measurement Accuracy. ... 17-9
Device-Connect-Time Measurement. 17-9
Device-Connect-Time-Measurement
Mode 17-10
Device-Connect-Time-Measurement
Enable 17-10
Extended Measurement Word. 17-10
Extended-Measurement-Word Enable .. 17-10
SignalsandResets 17-11
Signals. i i 17-11
HaltSignal 17-11
ClearSignal. 17-11
ResetSignal 17-12
Resets........ 17-12
Channel-PathReset 17-12
I/O-SystemReset 17-12
Externally Initiated Functions. 17-16
Initial Program Loading 17-16
CCW-type IPL 17-17
List-Directed IPL 17-19
Reconfiguration of the I/0O System. 17-22
Status Verification 17-22
Address-Limit Checking. 17-22
Configuration Alert. 17-23
Incorrect-Length-Indication Suppression. 17-23
ConcurrentSense 17-24
Channel-Subsystem Recovery 17-24
ChannelReport...................... 17-24
Channel-ReportWord 17-26
Restore-Subchannel Facility 17-28
Extended-Subchannel-Logout Facility. 17-28
Channel-Subsystem-I/O-Priority Facility 17-28
Number of Channel-Subsystem-Priority
Levels i 17-29
Multiple-Subchannel-Set Facility 17-29

Chapter 18, Hexadecimal-Floating-Point

Instructions 18-1
HFP Arithmetic 18-1
HFP Number Representation 18-1
Normalization. 18-2
HFP DataFormats. 18-3
HFP Short Format 18-3
HFP LongFormat 18-3
HFP Extended Format 18-3
Instructions 18-4
ADD NORMALIZED. 18-7
ADD UNNORMALIZED 18-9
COMPARE. 18-9
CONVERTFROMFIXED 18-10
CONVERTTOFIXED 18-11

DIVIDE i 18-11
HALVE 18-12
LOADANDTEST 18-13
LOAD COMPLEMENT 18-13
LOADFPINTEGER 18-14
LOAD LENGTHENED. 18-15
LOADNEGATIVE. 18-15
LOADPOSITIVE.t 18-16
LOADROUNDED. 18-16
MULTIPLY e 18-17
MULTIPLY ANDADD. 18-18
MULTIPLY AND SUBTRACT 18-19
MULTIPLY AND ADD UNNORMALIZED . . . 18-20
MULTIPLY UNNORMALIZED. 18-21
SQUAREROOTt 18-23
SUBTRACT NORMALIZED 18-24
SUBTRACT UNNORMALIZED. 18-24

Chapter 19, Binary-Floating-Point In-

structions 19-1
Binary-Floating-Point Facility 19-1
Floating-Point-Control (FPC) Register 19-2
BFP Arithmetic 19-2
BFPDataFormats 19-2
BFP Short Format 19-2
BFPLongFormat 19-2
BFP Extended Format 19-2
Biased Exponent. 19-2
Significand. L 19-3
Values of Nonzero Numbers. 19-3
Classesof BFPData. 19-4
ZEIOS. . it e 19-4
Subnormal Numbers. 19-4
Normal Numbers. 19-4
Infinities. L. 194
Signalingand QuietNaNs 19-4
BFP-Format Conversion................. 19-5
BFP Rounding. 19-5
BFP Comparison. 19-5
Remainder 19-5
IEEE Exceptions L. 19-7
Result Figures. 19-7
Data-Exception Codes (DXC) and
Abbreviations 19-7
Instructions, 19-8
ADD 19-11
COMPARE i, 19-15
COMPAREAND SIGNAL. 19-16
CONVERT FROMFIXED............... 19-17
CONVERTTOFIXED. 19-18
DIVIDE 19-20
DIVIDETOINTEGER. 19-21
LOADANDTEST, 19-24

XV

LOAD COMPLEMENT 19-25

LOAD FPINTEGER. 19-25
LOADLENGTHENED 19-27
LOAD NEGATIVE 19-28
LOADPOSITIVE 19-28
LOADROUNDED 19-29
MULTIPLY ... 19-29
MULTIPLY ANDADD 19-31
MULTIPLY AND SUBTRACT. 19-31
SQUAREROOT. 19-33
SUBTRACT it 19-33
TESTDATACLASS. 19-34

structions. 20-1
Decimal-Floating-Point Facility 20-1
DFP Arithmetic. 20-2
Finite Floating-Point Number 20-2
Cohort ... 20-2
Quantum 20-2
Preferred Quantum. 20-2
Scaled Preferred Quantum. 20-3
Delivered Quantum 20-3
Special Quantum-Handling Operations . .. 20-3
DFP DataFormats..................... 20-3
DFP ShortFormat 20-3
DFP Long Format 20-3
DFP Extended Format 20-4
SigN . 20-4
Combination. 20-4
Encoded Trailing Significand 20-5
Values of Finite Numbers.............. 20-5
Significand 20-5
DFP Significant Digits. 20-5
Canonical Declets 20-6
DFP CanonicalData 20-6
Classesof DFPData 20-6
ZEr0S ..o i it 20-6
Subnormal Numbers 20-6
Normal Numbers 20-7
Infinities 20-7
Signalingand QuietNaNs 20-7
Canonicalization. 20-7
DFP-Format Conversion 20-7
DFPRounding................ 20-7
DFP Comparison 20-7
DFP Formatting Instructions 20-7
Signed-Packed-Decimal Format 20-8
Unsigned-Packed-Decimal Format 20-8
IEEE Exceptions 20-8
Summary of Preferred Quantum 20-8
Summary of Rounding And Range Actions . . 20-9
Result Figures 20-12

XVi z/Architecture Principles of Operation

Data-Exception Codes (DXC) and

Abbreviations. L 20-12
Instructions L, 20-13
ADD. 20-15
COMPARE i, 20-17
COMPAREAND SIGNAL 20-18
COMPARE BIASED EXPONENT 20-19
CONVERTFROMFIXED 20-20
CONVERT FROM SIGNED PACKED... ... 20-20
CONVERT FROM UNSIGNED PACKED . . .20-21
CONVERTTOFIXED.................. 20-21
CONVERT TO SIGNED PACKED 20-23
CONVERT TO UNSIGNED PACKED. 20-24
DIVIDE 20-24
EXTRACT BIASED EXPONENT. 20-25
EXTRACT SIGNIFICANCE 20-26
INSERT BIASED EXPONENT 20-26
LOADANDTEST ... 20-28
LOADFPINTEGER 20-29
LOAD LENGTHENED. 20-30
LOADROUNDED, 20-31
MULTIPLY 20-33
QUANTIZE it 20-34
REROUND 20-36
SHIFT SIGNIFICAND LEFT 20-38
SHIFT SIGNIFICAND RIGHT 20-39
SUBTRACT ... 20-39
TESTDATACLASSt 20-40
TESTDATAGROUP. 20-41
Densely Packed Decimal (DPD)............ 20-42
Decimal-to-DPD Mapping 20-42
DPD-to-Decimal Mapping 20-42
Summary of Noncanonical Declets 20-42

Appendix A, Number Representation and

Instruction-Use Examples A-1
Number Representation A-2
Binary Integers L. A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-3
DecimalIntegers A-4
Hexadecimal-Floating-Point Numbers. A-5
Conversion Example A-6
Instruction-Use Examples A-7
Machine Format A-7
Assembler-Language Format A-7
Addressing Mode in Examples A-7
General Instructions A-7
ADD HALFWORD (AH). oot A-8
AND (N, NC,NI,NR). A-8
NIExample A-8
Linkage Instructions (BAL, BALR, BAS, BASR,
BASSM,BSM).o A-8

Other BALR and BASR Examples. A-10
BRANCH AND STACK (BAKR)........... A-10
BAKR Example 1. A-10
BAKR Example2.................... A-11
BAKR Example 3. A-11
BRANCH ON CONDITION (BC, BCR) A-12
BRANCH ON COUNT (BCT, BCTR). A-12
BRANCH ON INDEX HIGH (BXH) A-12
BXHExample1..................... A-12
BXHExample2..................... A-13
BRANCH ON INDEX LOW OR EQUAL
(BXLE). A-13
BXLE Example 1 A-14
BXLE Example2 A-14
COMPARE AND FORM CODEWORD (CFC) A-14
COMPARE HALFWORD (CH) A-14
COMPARE LOGICAL (CL, CLC, CLI, CLR) . A-15
CLCExample........., A-15
CLIExample A-15
CLRExample.............. A-15
COMPARE LOGICAL CHARACTERS UNDER
MASK(CLM) i A-16
COMPARE LOGICAL LONG (CLCL) A-16
COMPARE LOGICAL STRING (CLST). A-18
CONVERT TO BINARY (CVB) A-18
CONVERT TO DECIMAL (CVD).......... A-19
DIVIDE(D,DR), A-19
EXCLUSIVEOR (X, XC, XI, XR). A-20
XCExample........... A-20
XIExample A-21
EXECUTE(EX) A-21
FIND LEFTMOST ONE (FLOGR) A-22
INSERT CHARACTERS UNDER MASK
(ICM) .o A-23
LOAD (L,LR). ... A-23
LOAD ADDRESS (LA).t A-23
LOAD HALFWORD (LH) A-24
MOVE (MVC,MVI) A-24
MVCExample A-24
MVIExample A-25
MOVE INVERSE (MVCIN) A-25
MOVELONG (MVCL) A-26
MOVE NUMERICS (MVN). A-26
MOVE STRING (MVST) A-27
MOVE WITH OFFSET (MVO)............ A-27
MOVE ZONES (MVZ) A-28
MULTIPLY M, MR). A-28
MULTIPLY HALFWORD (MH). A-29
OR(O,0C,0OLOR).iiiivan. A-29
OlExample, A-29
PACK(PACK) A-29
ROTATE THEN EXCLUSIVE OR SELECTED
BITS. ... A-30

ROTATE THEN INSERT SELECTED BITS . A-30

ROTATE THEN OR SELECTED BITS.. A-30

SEARCH STRING (SRST) A-31
SRSTExample 1..................... A-31
SRSTExample2..................... A-31

SHIFT LEFT DOUBLE (SLDA) A-31

SHIFT LEFT SINGLE (SLA) A-32

STORE CHARACTERS UNDER MASK

(STCM) ..ot e A-32
STORE MULTIPLE (STM) A-32
TEST UNDERMASK (TM) A-33
TRANSLATE (TR).o A-33
TRANSLATE AND TEST (TRT) A-34
UNPACK (UNPK)t A-35
UPDATE TREE (UPT) A-36

Decimal Instructions A-36

ADD DECIMAL (AP)ot A-36

COMPARE DECIMAL (CP) A-36

DIVIDE DECIMAL (DP). A-37

EDIT(ED). ... A-37

EDIT AND MARK (EDMK) A-38

MULTIPLY DECIMAL (MP). A-39

SHIFT AND ROUND DECIMAL (SRP). A-39
Decimal Left Shift A-39
Decimal Right Shift A-39
Decimal Right Shiftand Round. A-40
Multiplying by a Variable Power of 10. A-40

ZERO AND ADD (ZAP), A-41

Hexadecimal-Floating-Point Instructions A-41

ADD NORMALIZED (AD, ADR, AE, AER,

AXR) . A-41
ADD UNNORMALIZED (AU, AUR, AW,

AWR) .. A-42
COMPARE (CD, CDR, CE,CER).......... A-42
DIVIDE (DD, DDR, DE, DER)............. A-42
HALVE (HDR,HER) A-43
MULTIPLY (MD, MDR, MDE, MDER, MXD,

MXDR,MXR) A-43
Hexadecimal-Floating-Point-Number

Conversion ... A-44

Fixed Point to Hexadecimal Floating Point . A-44
Hexadecimal Floating Point to Fixed Point . A-44

Multiprogramming and Multiprocessing

Examples i A-45
Example of a Program Failure Using OR
Immediate. A-45
Conditional Swapping Instructions (CS, CDS) A-46
Settinga SingleBit A-46
Updating Counters A-47
Bypassing Postand Wait A-47
Lock/Unlock i, A-47
Lock/Unlock with LIFO Queuing for
Contentions. A-48
Lock/Unlock with FIFO Queuing for
Contentions. A-49

Xvii

Free-Pool Manipulation A-50
PERFORM LOCKED OPERATION (PLO). . . A-51
Sorting Instructions, A-53
TreeFormat............ A-53
Example of Use of Sort Instructions. A-54

Appendix B, Lists of Instructions ... B-1

Instructions Arranged by Name B-4
Instructions Arranged by Mnemonic B-21
Instructions Arranged by Operation Code B-37

Appendix C, Condition-Code SettingsC-1

Xviii z/Architecture Principles of Operation

Appendix G, Table of Powers of 2. . . G-1

Appendix H, Hexadecimal Tables ... H-1

Appendix |, EBCDIC and ISO-8 Codes I-1
Control Character Representations -2
Formatting Character Representations -2
Additional ISO-8 Control Character Representa-

tions -2

Notices

References in this publication to IBM® products, pro-
grams or services do not imply that IBM intends to
make these available in all countries in which IBM
operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only
IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service
that does not infringe any of IBM's intellectual prop-
erty rights may be used instead of the IBM product,
program, or service. Evaluation and verification of
operation in conjunction with other products, except
those expressly designated by IBM, is the user's
responsibility.

IBM may have patents or pending patent applications
covering subject matter in this document. The fur-
nishing of this document does not give you any
license to these patents. You can send license inquir-
ies, in writing, to the IBM Director of Licensing, IBM
Corporation, North Castle Drive, Armonk, NY,
10504-1785 USA.

© Copyright IBM Corp. 1990-2008

Trademarks

The following terms are trademarks of the Interna-
tional Business Machines Corporation in the United
States, other countries, or both:

AIX/ESA

BookMaster

CICS

DB2

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
Enterprise Systems Connection Architecture
ESA/370

ESA/390

ESCON

FICON

IBM

IBMLink

MVS/ESA

0S/390

Processor Resource/Systems Manager
PR/SM

Sysplex Timer

System/370

VM/ESA

z/Architecture

z/0S

ANSI is a registered trademark of the American
National Standards Institute in the United States,
other countries, or both.

Unicode is a registered trademark of Unicode, Incor-
porated in the United States, other countries, or both.

IEEE is a trademark of the Institute of Electrical and

Electronics Engineers, Inc. in the United States,
other countries, or both.

Xix

XX z/Architecture Principles of Operation

Preface

This publication provides, for reference purposes, a
detailed z/Architecture™ description.

The publication applies only to systems operating as
defined by z/Architecture. For systems operating in
accordance with the Enterprise Systems Architec-
ture/390° (ESA/390™) definition, the IBM ESA/390
Principles of Operation, SA22-7201, should be con-
sulted.

The publication describes each function at the level
of detail needed to prepare an assembler-language
program that relies on that function. It does not, how-
ever, describe the notation and conventions that must
be employed in preparing such a program, for which
the user must instead refer to the appropriate assem-
bler-language publication.

The information in this publication is provided princi-
pally for use by assembler-language programmers,
although anyone concerned with the functional
details of z/Architecture will find it useful.

This publication is written as a reference and should
not be considered an introduction or a textbook. It
assumes the user has a basic knowledge of data-
processing systems.

All facilities discussed in this publication are not nec-
essarily available on every model. Furthermore, in
some instances the definitions have been structured
to allow for some degree of extendibility, and there-
fore certain capabilities may be described or implied
that are not offered on any model. Examples of such
capabilities are the use of a 16-bit field in the sub-
system-identification word to identify the subchannel
number, the size of the CPU address, and the num-
ber of CPUs sharing main storage. The allowance for
this type of extendibility should not be construed as
implying any intention by IBM to provide such capa-
bilities. For information about the characteristics and
availability of facilities on a specific model, see the
functional characteristics publication for that model.

Largely because this publication is arranged for refer-
ence, certain words and phrases appear, of neces-
sity, earlier in the publication than the principal
discussions explaining them. The reader who
encounters a problem because of this arrangement

© Copyright IBM Corp. 1990-2008

should refer to the index, which indicates the location
of the key description.

The information presented in this publication is
grouped in 20 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facilities
of z/Architecture.

Chapter 2, Organization, describes the major group-
ings within the system — main storage, expanded
storage, the central processing unit (CPU), the exter-
nal time reference (ETR), and input/output — with
some attention given to the composition and charac-
teristics of those groupings.

Chapter 3, Storage, explains the information formats,
the addressing of storage, and the facilities for stor-
age protection. It also deals with dynamic address
translation (DAT), which, coupled with special pro-
gramming support, makes the use of a virtual stor-
age possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally initi-
ated operations, for debugging, and for timing. It
deals specifically with CPU states, control modes,
the program-status word (PSW), control registers,
tracing, program-event recording, timing facilities,
resets, store status, and initial program loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use of
the program-status word (PSW), of branching, and of
interruptions. It contains the principal description of
the advanced address-space facilities that were intro-
duced in ESA/370™. It also details the aspects of
program execution on one CPU as observed by other
CPUs and by channel programs.

Chapter 6, Interruptions, details the mechanism that
permits the CPU to change its state as a result of
conditions external to the system, within the system,
or within the CPU itself. Six classes of interruptions
are identified and described: machine-check inter-
ruptions, program interruptions, supervisor-call inter-
ruptions, external interruptions, input/output
interruptions, and restart interruptions.

XXi

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data for-
mats and of all unprivileged instructions except the
decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in detail
decimal data formats and the decimal instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the floating-
point operations, detailed descriptions of those
instructions common to binary-floating-point, deci-
mal-floating-point, and hexadecimal-floating-point
operations, and summaries of all floating-point
instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the 1/O instructions.

Chapter 11, Machine-Check Handling, describes the
mechanisms for detecting, correcting, and reporting
machine malfunctions.

Chapter 12, Operator Facilities, describes the basic
manual functions and controls available for operating
and controlling the system.

Chapters 13-17 of this publication provide a detailed
definition of the functions performed by the channel
subsystem and the logical interface between the
CPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief descrip-
tion of the basic components and operation of the
channel subsystem.

Chapter 14, I/O Instructions, contains the description
of the I1/O instructions.

Chapter 15, Basic I/O Functions, describes the basic
I/O functions performed by the channel subsystem,
including the initiation, control, and conclusion of 1/0
operations.

Chapter 16, I/O Interruptions, covers I/O interruptions
and interruption conditions.

Chapter 17, I/O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

XXii z/Architecture Principles of Operation

Chapter 18, Hexadecimal-Floating-Point Instructions,
contains detailed descriptions of the hexadecimal-
floating-point (HFP) data formats and the HFP
instructions.

Chapter 19, Binary-Floating-Point Instructions, con-
tains detailed descriptions of the binary-floating-point
(BFP) data formats and the BFP instructions.

Chapter 20, Decimal-Floating-Point Instructions, con-
tains detailed descriptions of the decimal-floating-
point (DFP) data formats and the DFP instructions.

The Appendixes include:

¢ Information about number representation

¢ Instruction-use examples

e Lists of the instructions arranged in several
sequences

* A summary of the condition-code settings

e A table of the powers of 2

e Tabular information helpful in dealing with hexa-
decimal numbers

e A table of EBCDIC and other codes.

Size and Number Notation

In this publication, the letters K, M, G, T, P, and E
denote the multipliers 2'°, 22°, 23° 2% 2% and 2%,
respectively. Although the letters are borrowed from
the decimal system and stand for kilo (103), mega
(10%), giga (10%), tera (10'®), peta (10"), and exa
(10", they do not have the decimal meaning but
instead represent the power of 2 closest to the corre-
sponding power of 10. Their meaning in this publica-
tion is as follows:

Symbol Value
K (kilo) 1,024 = 2"°
M (mega) 1,048,576 = 2%°
G (giga) 1,073,741,824 = 2%°
T (tera) 1,099,511,627,776 = 2%
P (peta) 1,125,899,906,842,624 = 2°°
E (exa) 1,152,921,504,606,846,976 = 2°°

The following are some examples of the use of K, M,
G, T, and E:

2,048 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K (not 65K).
2** is expressed as 16M.

2*" is expressed as 2G.

2*2is expressed as 4T.

2% is expressed as 16E.

When the words “thousand” and “million” are used,
no special power-of-2 meaning is assigned to them.

All numbers in this publication are in decimal unless
they are explicitly noted as being in binary or hexa-
decimal (hex).

Bytes, Characters, and Codes

Although the System/360 architecture was originally
designed to support the Extended Binary-Coded-
Decimal Interchange Code (EBCDIC), the instruc-
tions and data formats of the architecture are for the
most part independent of the external code which is
to be processed by the machine. For most instruc-
tions, all 256 possible combinations of bit patterns for
a particular byte can be processed, independent of
the character which the bit pattern is intended to rep-
resent. For instructions which use the zoned format,
and for those few instructions which are dependent
on a particular external code, the instruction TRANS-
LATE may be used to convert data from one code to
another code. Thus, a machine operating in accor-
dance with z/Architecture can process EBCDIC,
ASCII, or any other code which can be represented
in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by consid-
ering the bits of the byte to represent a binary code.
Thus, when a byte is said to contain a zero, the value
00000000 binary, or 00 hex, is meant, and not the
value for an EBCDIC character “0,” which would be
FO hex.

Other Publications

The parallel-I/O interface is described in the publica-
tion IBM System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Manu-
facturers’ Information, GA22-6974.

The parallel-I/O channel-to-channel adapter is
described in the publication IBM Enterprise Systems
Architecture/390 Channel-to-Channel Adapter for the

System/360 Interface,

SA22-7091.

and System/370 1/O

The Enterprise Systems Connection Architecture®

(ESCON®) I/O interface, referred to in this publication
along with the FICON 1/O interface as the serial-I/O
interface, is described in the publication IBM Enter-
prise Systems Architecture/390 ESCON I/O Inter-
face, SA22-7202.

The FICON 1/O interface is described in the ANSI®
standards document Fibre Channel - Single-Byte
Command Code Sets-2 (FC-SB-2).

The channel-to-channel adapter for the serial-I/O
interface is described in the publication IBM Enter-
prise Systems Architecture/390 ESCON Channel-to-
Channel-Adapter, SA22-7203.

The commands, status, and sense data that are
common to all I/O devices that comply with z/Archi-
tecture are described in the publication IBM Enter-
prise Systems Architecture/390 Common I/O-Device
Commands and Self Description, SA22-7204.

The compression facility is described in the publica-
tion IBM Enterprise Systems Architecture/390 Data
Compression, SA22-7208. The z/Architecture form of
the COMPRESSION CALL instruction is described in
this publication.

The interpretive-execution facility is described in the
publication IBM 370-XA Interpretive Execution,
SA22-7095.

Summary of Changes in Seventh
Edition

The seventh edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

Compare-and-swap-and-store facility 2
Configuration-topology facility
Enhanced-DAT facility
Execute-extensions facility
General-instructions-extension facility
Move-with-optional-specifications facility
Parsing-enhancement facility
Restore-subchannel facility

xxiii

The seventh edition contains minor clarifications and
corrections and also the following significant changes
relative to the previous edition:

* In Chapter 3, “Storage:”

— Changes introduced by the enhanced-DAT
facility are added to various sections.

— Changes introduced by the enhanced sup-
pression-on-protection function are added

— Changes introduced by the execute-exten-
sions facility are added to various sections.

— Changes introduced by the general-instruc-
tions-extension facility are added to the sec-
tion “Assigned Storage Locations.”

— Changes introduced by the move-with-
optional-specifications facility are added to
the section “Protection.”

e In Chapter 4, “Control.”

— Changes introduced by the enhanced-DAT
facility are added to various sections.

— Changes introduced by the execute-exten-
sions facility are added to various sections.

— Changes introduced by the general-instruc-
tions-extension facility are added to various
sections.

— New facility bits for the compare-and-swap-
and-store facility 2, configuration-topology
facility, enhanced-DAT facility, execute-exten-
sions facility, general-instructions-extension
facility, move-with-optional-specifications
facility, and parsing-enhancement facility are
added to the section “Facility Indications.”

* In Chapter 5, “Program Execution:”

— In the section “Instruction Formats,” the RIS,
RRS, and SIL formats are added. Four new
versions of the RIE instruction format and
one new version of the RXY format are
added.

— Changes introduced by the enhanced-DAT
facility are added to various sections.

— Changes introduced by the execute-exten-
sions facility are added to various sections.

XXiV z/Architecture Principles of Operation

Changes introduced by the general-instruc-
tions-extension facility are added to various
sections.

Changes introduced by the move-with-
optional-specifications facility are added to
various sections.

Changes introduced by the parsing-
enhancement facility are added to the sec-
tion “Multiple-Access References.”

In Chapter 6, “Interruptions:”

Changes introduced by the compare-and-
swap-and-store facility 2 are added to the
section “Specification Exception.”

Changes introduced by the enhanced-DAT
facility are added to various sections.

Changes introduced by the execute-exten-
sions facility are added to various sections.

Changes introduced by the general-instruc-
tions-extension facility are added to various
sections.

Changes introduced by the move-with-
optional-specifications facility are added to
various sections.

Changes introduced by the parsing-
enhancement facility are added to section
“Specification Exception.”

In Chapter 7, “General Instructions:”

For various instruction descriptions in which
multiple instruction formats are present,
headings have been added to distinguish
one format from another.

Changes introduced by the compare-and-
swap-and-store facility 2 are added to the
description of the COMPARE AND SWAP
AND STORE instruction.

Changes introduced by the message-secu-
rity-assist extension 2 are added to the
descriptions of the CIPHER MESSAGE,
CIPHER MESSAGE WITH CHAINING,
COMPUTE INTERMEDIATE MESSAGE
DIGEST and COMPUTE LAST MESSAGE
DIGEST instructions.

Programming notes are added to the
description of the UTF conversion instruc-

tions (CU12, CU14, CU21, CU24, CU41, and
CU42) indicating that the instructions sup-
port big-endian encoding only.

Changes introduced by the execute-exten-
sions facility are added to various sections,
including the description of the EXECUTE
RELATIVE LONG instruction.

Changes introduced by the general-instruc-
tions-extension facility are added to various
sections, including the descriptions of the
facility’s 72 new instructions.

The description of the MOVE LONG UNI-
CODE instruction is amended such that an
odd length specification is permitted.

Changes introduced by the parsing-
enhancement facility are added to various
sections, including the descriptions of the
TRANSLATE AND TEST EXTENDED and
TRANSLATE AND TEST REVERSE
EXTENDED instructions.

¢ In Chapter 10, “Control Instructions:”

Changes introduced by the move-with-
optional-specifications facility are added to
various sections, including the description of
the MOVE WITH OPTIONAL SPECIFICA-
TIONS instruction.

Changes introduced by the enhanced-DAT
facility are added to various sections, includ-
ing the description of the PERFORM FRAME
MANAGEMENT FUNCTION instruction.

Changes introduced by the configuration-
topology facility are added to various sec-
tions, including the description of the PER-
FORM TOPOLOGY FUNCTION instruction
and enhancements to the STORE SYSTEM
INFORMATION instruction.

Changes introduced by the execute-exten-
sions facility are added to various sections.

The STORE SYSTEM INFORMATION
instruction is enhanced to include the follow-

ing:

¢ Additional information returned in SYSIB
1.1.1.

* The definition of SYSIB 15.1.2 in support
of the configuration-topology facility.

* In Chapter 11, “Machine-Check Handling:”

Changes introduced by the enhanced-DAT
facility are added to various sections.

Changes introduced by the execute-exten-
sions facility are added to various sections.

The seventh edition also contains numerous minor
corrections and clarifications.

Summary of Changes in Sixth
Edition

The sixth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

Compare-and-swap-and-store facility
Conditional-SSKE facility
Decimal-floating-point facility
Decimal-floating-point-rounding facility
Extract-CPU-time facility
Floating-point-support-sign-handling facility
FPR-GR-transfer facility
IEEE-exception-simulation facility

PFPO facility

The sixth edition contains minor clarifications and
corrections and also the following significant changes
relative to the previous edition:

* In Chapter 3, “Storage”:

Changes introduced by the conditional-
SSKE facility are added to various sections.

In the “Assigned Storage Locations” section,
the descriptions of the various fields now
include hexadecimal as well as decimal loca-
tions.

Clarification is made to the definition of the
exception access identification and PER
access identification at locations 160 and
161, respectively.

e In Chapter 4, “Control”:

Changes introduced by the extract-CPU-time
facility are added to the section “CPU Timer”

New facility bits for the compare-and-swap-
and-store facility, decimal-floating-point facil-

XXV

XXVi

ityy, decimal-floating-point performance,
extract-CPU-time facility, floating-point-sup-
port-enhancement facilities (FPR-GR-load-
ing, FPS-sign-handling, and DFP-rounding),
and PFPO (PERFORM FLOATING-POINT
OPERATION) facility are added to the sec-
tion “Facility Indications.”

In Chapter 5, “Program Execution”:

— In the section “Instruction Formats”, the RRR
and SSF formats are added.

— Changes introduced by the compare-and-
swap-and-store facility are added to various
sections.

— Changes introduced by the extract-CPU-time
facility are added to the “Consistency Speci-
fication” section.

— Previous restrictions on storing into the
instruction stream in the access-register or
home address-space-control modes are
removed.

In Chapter 6, “Interruptions”

— Changes introduced by the simulated IEEE
exception (IXS) are added to the various
sections.

— Changes introduced by the compare-and-
swap-and-store facility are added to various
sections.

— The descriptions of the special-operation
and specification program interruptions are
updated and rearranged.

— Clarification is added to the section “Multiple
Program-Interruption Conditions.”

In Chapter 7, “General Instructions”:

— The descriptions of the COMPARE AND
SWAP AND STORE and EXTRACT CPU
TIME instructions are added.

— Programming notes for COMPARE LOGI-
CAL LONG UNICODE and MOVE LONG
UNICODE are amended to account for the
long-displacement facility.

— A programming note clarifying the setting of
the condition code is added to AND IMMEDI-
ATE, EXCLUSIVE OR IMMEDIATE, and OR
IMMEDIATE.

z/Architecture Principles of Operation

In Chapter 9, “Floating-Point Overview and Sup-
port Instructions”:

— The concepts of “views” and “quantum” are
introduced.

— The name of the instruction SET ROUND-
ING MODE is changed to SET BFP ROUND-
ING MODE and is moved from Chapter 19 to
Chapter 9.

— The following instructions operating on the
floating-point-control (FPC) register are
moved from Chapter 19 to Chapter 9:
EXTRACT FPC, LOAD FPC, SET FPC, and
STORE FPC.

— The FPR-GR-transfer facility instructions,
LOAD FPR FROM GR and LOAD GR FROM
FPR, are added.

— The four instructions making up the floating-
point-support-sign-handling facility are
added: COPY SIGN, LOAD COMPLEMENT,
LOAD NEGATIVE, and LOAD POSITIVE.

— The decimal-floating-point-rounding facility is
added. This includes a 3-bit DFP rounding
mode field in the floating-point control (FPC)

register and the instruction SET DFP
ROUNDING MODE.
— The IEEE-exception-simulation facility is

added, including the instructions SET FPC
AND SIGNAL and LOAD FPC AND SIGNAL.

— The instruction PERFORM FLOATING-
POINT OPERATION (PFPO) is added.

In Chapter 10, “Control Instructions”, changes
introduced by the conditional-SSKE facility are
added to the description of SET STORAGE KEY
EXTENDED.

In Chapter 11, “Machine-Check Handling”,
changes introduced by the conditional-SSKE
facility are added.

In Chapter 12, the operator rate control is now
defined to be model dependent.

In Chapter 14, clarification is added to the sec-
tion “Modified CCW Indirect Data Addressing”.

In Chapter 18, “Hexadecimal-Floating-Point
Instructions”: The names of two of the rounding
methods used by the instruction CONVERT TO
FIXED are changed from “biased round to near-

est” and “round to nearest” to “round to nearest
with ties away from 0” and “round to nearest with
ties to even”, respectively.

In Chapter 19, “Binary-Floating-Point Instruc-
tions”: This chapter is updated extensively to be
consistent with Chapter 20. This includes the fol-
lowing:

The terms “normal” and “subnormal”, refer-
ring to BFP data classes, replace the obso-
lete terms “normalized”, and “denormalized”,
respectively.

The name of the instruction SET ROUND-
ING MODE is changed to SET BFP ROUND-
ING MODE and is moved from Chapter 19 to
Chapter 9.

The following instructions operating on the
floating-point-control (FPC) register are
moved from Chapter 19 to Chapter 9:
EXTRACT FPC, LOAD FPC, SET FPC, and
STORE FPC.

The section “Floating-Point-Control (FPC)
Register” is moved to Chapter 9.

The sections “BFP Rounding”, “BFP Com-
parison”, “Condition Codes for BFP Instruc-
tions”, and “IEEE Exception Conditions” are
renamed and moved to Chapter 9.

In Chapter 20, “Decimal-Floating-Point Instruc-
tions”: This chapter is new, and describes the
decimal-floating-point (DFP) facility.

The sixth edition also contains numerous minor cor-
rections and clarifications.

Summary of Changes in Fifth
Edition

The fifth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

DAT-enhancement facility 2
ETF2-enhancement facility
ETF3-enhancement facility
Extended-immediate facility
HFP-unnormalized-extensions facility
Message-security-assist extension 1
Modified-CCW-indirect-data-addressing facility

PER-3 facility
Server-time-protocol facility
Store-clock-fast facility
Store-facility-list-extended facility:
TOD-clock-steering facility

The fifth edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

* In Chapter 3, “Storage™:

In the “Information Formats” section, the
length of a storage-operand field that is
implied by the instruction now includes a
16-byte operand.

Changes introduced by the modified-CCW-
indirect-data-addressing facility are added to
various sections.

Changes introduced by the DAT-enhance-
ment facility 2 are added to various sections.

Changes introduced by the PER-3 facility are
added to the section “Assigned Storage
Locations.”

Changes introduced by the store-facility-list-
extended facility are added to section
“Assigned Storage Locations.”

e In Chapter 4, “Control”:

Changes introduced by the store-clock-fast
facility are added to various sections.

Changes introduced by the PER-3 facility,
including breaking-event-address recording
and PER instruction-fetch nullification, are
added to various sections.

Changes introduced by the server-time pro-
tocol (STP) facility are added to various sec-
tions.

Changes introduced by the TOD-clock-steer-
ing facility are added to various sections.

The conditional-emergency-signal and
sense-running-status orders are added to
the section “Signal-Processor Orders.”

The location in which the PSW that is pre-
served as a result of switching from the
z/Architecture to the ESA/390 architectural
mode is formally named the Captured
z/Architecture PSW register.

XXvii

The description of all facility-indication bits
has been moved to a new section at the end
of the chapter.

* In Chapter 5, “Program Execution”:

The instructions of the message-security
assist are added to the section “Condition
Code Alternative to Interruptibility.”

Changes introduced by the DAT-enhance-
ment facility 2 are added to various sections.

Changes introduced by the store-clock-fast
facility are added to various sections.

Changes introduced by the modified-CCW-
indirect-data-addressing facility are added to
the section “Channel-Program Serialization.”

e In Chapter 6, “Interruptions”:

Changes introduced by the PER-3 facility are
added to the various sections.

Changes introduced by the server-time pro-
tocol (STP) facility are added to various sec-
tions.

Changes introduced by the TOD-clock-steer-
ing facility are added to various sections.

Changes introduced by the DAT-enhance-
ment facility 2 are added to various sections.

Changes introduced by the extended-imme-
diate facility are added to the description of
the specification exception program interrup-
tion.

e In Chapter 7, “General Instructions”:

XXviii

A note is added to the “Instructions” section
indicating that, for certain new or modified
instructions, an operand may be optional.

Descriptions of thirty-four new instructions
introduced by the extended-immediate facil-
ity are added.

A description of the STORE CLOCK FAST
instruction is added.

A description of the STORE FACILITY LIST
EXTENDED instruction is added.

Changes introduced by the TOD-clock-steer-
ing facility are added to the STORE CLOCK,

z/Architecture Principles of Operation

STORE CLOCK FAST, and STORE CLOCK
EXTENDED instructions.

Descriptions of new functions introduced by
the message-security-assist extension 1 are
added to the CIPHER MESSAGE, CIPHER
MESSAGE WITH CHAINING, COMPUTE
INTERMEDIATE MESSAGE DIGEST, and
COMPUTE LAST MESSAGE DIGEST
instructions.

Changes introduced by the ETF-2 enhance-
ment facility are added to the TRANSLATE
ONE TO ONE, TRANSLATE ONE TO TWO,
TRANSLATE TWO TO ONE, and TRANS-
LATE TWO TO TWO instructions.

Changes introduced by the ETF-3 enhance-
ment are added to the CONVERT UTF-16
TO UTF-32, CONVERT UTF-16 TO UTF-8,
CONVERT UTF-8 TO UTF-16, and CON-
VERT UTF-8 TO UTF-32 instructions.

e In Chapter 10, “Control Instructions”:

A description of the LOAD PAGE-TABLE-
ENTRY ADDRESS instruction, introduced by
the DAT-enhancement facility 2, is added.

A description of the PERFORM TIMING
FACILITY FUNCTION instruction, introduced
by the TOD-clock-steering facility, is added.

Changes introduced by the TOD-clock-steer-
ing facility are added to the description of the
SET CLOCK instruction.

The description of all facility-indication bits
are moved to Chapter 4 (they are removed
from the description of the STORE FACILITY
LIST instruction).

A model-dependent field is defined in the
SYSIB 2.2.2 operand stored by the STORE
SYSTEM INFORMATION instruction.

Changes introduced by the store-clock-fast
facility are added to the description of the
TRACE instruction.

* In Chapter 11, “Machine-Check Handling”:

Changes introduced by the store-clock-fast
facility are added to the section “CPU Retry.”

Changes introduced by the modified-CCW-
indirect-data-addressing facility are added to
the section “Invalid CBC in Storage”.

— Changes introduced by the TOD-clock-steer-
ing facility are added to the section “Timing-
Facility Damage.”

— Changes introduced by the server-time-pro-
tocol facility are added to the section “Exter-
nal-Damage Code.”

In Chapter 13, “I/O Overview”, changes intro-
duced by the modified-CCW-indirect-data-
address facility are added to the section “Chan-
nel-Program Execution”.

In Chapter 15, “Basic I/O Functions”:

e Changes introduced by the modified-CCW-
indirect-data-addressing facility are added
which include:

* The modified-indirect-data-address word
(MIDAW) is defined.

e Bit 25 of word 1 of the operation-request
block (ORB) is defined as the modified-
CCWe-indirect-data-addressing control.

e Bit 7 of the flags field in the channel-
command word (CCW) is defined as the
modified-indirect-data-addressing flag.

In Chapter 16, “I/O Interruptions*:

e Changes introduced by the modified-CCW-
indirect-data-address facility are added to
the sections “Subchannel-Status Word” and
“Extended-Status Word”.

* Changes are introduced to the section “Inter-
face-Control Check” to support retrying a
CCW-type IPL when an interface-control
check is detected during the execution of the
IPL channel program.

In Chapter 17, “I/O Support Functions”:

e Changes are introduced to the section
“CCW-Type IPL’ to support retrying a CCW-
type IPL when an interface-control check is
detected during the execution of the IPL
channel program.

* Changes are introduced to the section “List-
Directed IPL” to support storing of the sub-
system-identification word (SID) for the IPL-
device during list-directed IPL, if a subchan-
nel is associated with the IPL-device.

In Chapter 18, “Hexadecimal-Floating-Point
Instructions”, descriptions of the twelve instruc-

tions introduced by the HFP-unnormalized-
extensions facility are added.

* In Appendix |, character representations of
EBCDIC code pages 81C, 94C, 500, and 1047,
IBM-PC, and BookMaster symbols are removed.
Only the commonly used EBCDIC code page
037 and ISO-8 characters are shown.

Summary of Changes in Fourth
Edition

The fourth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the extended-translation facility 3 and the
ASN-and-LX-reuse facility. The fourth edition con-
tains minor clarifications and corrections and also the
following significant changes relative to the previous
edition:

e In Chapter 3, “Storage”:

— Changes introduced by the ASN-and-LX-
reuse facility are added, including changes
to the “Address Spaces” and “ASN Transla-
tion” sections.

— A programming note is added to the
“Dynamic Address Translation” section,
describing implications in using common
segments.

— The ATMID and Al fields are corrected in the
“Assigned Storage Locations” figure.

¢ In Chapter 4, “Control”:

— Changes introduced by the ASN-and-LX-
reuse facility are added, including changes
to the “Trace” section.

— The list-directed IPL function is added to the
“Initial Program Load” section.

— In the “Trace” section, serialization require-
ments for instructions that implicitly store into
the trace table or linkage stack are relaxed.

* In Chapter 5, “Program Execution”:

— A new RI and SS instruction format are
included.

— Changes introduced by the ASN-and-LX-
reuse facility are added, including changes

XXix

XXX

to the “Authorization Mechanisms”, “PC-
Number Translation”, and “Linkage-Stack
Operations” sections.

The instructions of the extended-translation
facility 3 (except TRANSLATE AND TEST
REVERSED) are added to the sections
“Condition-Code Alternative to Interruptibil-
ity” and “Multiple-Access References.”

Serialization requirements for instructions
that implicitly store into the trace table or link-
age stack are relaxed.

In Chapter 6, “Interruptions”:

Changes introduced by the ASN-and-LX-
reuse facility include the new LFX transla-
tion, LSX translation, LSTE sequence, and
ASTE instance exceptions.

An additional condition for TRAP is added to
the list of instructions that can cause a spe-
cial-operation exception to be recognized.

SEARCH STRING UNICODE, a part of the
extended-translation facility 3, is added to
the list of instructions that can cause a speci-
fication exception to be recognized.

In Chapter 7, “General Instructions”:

Six new instructions provided by the
extended-translation facility 3 are added. The
instructions CONVERT UNICODE TO UTF-8
(CUUTF) and CONVERT UTF-8 TO UNI-
CODE (CUTFU) are renamed to CONVERT
UTF-16 TO UTF-8 (CU21) and CONVERT
UTF-8 TO UTF-16 (CU12), respectively. The
old mnemonics continue to be recognized.

The instruction-format illustrations for

STAMY and STMY are corrected.

In Chapter 10, “Control Instructions”:

Changes introduced by the ASN-and-LX-
reuse facility include the following:

— Four new instructions provided by the
facility are added.

— The definitions of BRANCH AND
STACK, BRANCH IN SUBSPACE
GROUP, EXTRACT PRIMARY ASN,
EXTRACT SECONDARY ASN, LOAD
ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM

z/Architecture Principles of Operation

RETURN, PROGRAM TRANSFER, and
SET SECONDARY ASN are updated to
account for the facility.

New facility bits for the ASN-and-LX-reuse
facility and the extended-translation facility 3
are added to STORE FACILITY LIST.

New fields are added to the system-informa-
tion block (SYSIB) returned by STORE SYS-
TEM INFORMATION.

Serialization requirements for instructions
that implicitly store into the trace table or link-
age stack are relaxed, including PROGRAM
CALL, PROGRAM RETURN, PROGRAM
TRANSFER (WITH INSTANCE), SET SEC-
ONDARY ASN (WITH INSTANCE), and
TRACE.

Corrections and clarifications are made to
TRAP.

In Chapter 12, “Operator Facilities” Changes
introduced by the list-directed IPL function are
added, including the load-clear-list-directed key
and the load-with-dump key.

In Chapter 14, “I/O Instructions”, Clarifications
are added to programming note 1 of the CAN-
CEL SUBCHANNEL instruction description.

In Chapter 16, “I/O Interruptions”:

Bit 1 of the extended-report word (ERW) is
defined as the request-logging-only (L) bit.

Bit 2 of the ERW is defined as the extended-
subchannel-logout-pending (E) bit.

Words 2-3 of the format-0 extended-status
word (ESW) are defined as the failing-stor-
age address when the failing-storage-
address-validity (F) bit, bit 6 of the ERW, is
one and as the extended-subchannel-logout
descriptor (ESLD) when the extended-sub-
channel-logout-pending (E) bit, bit 2 of the
ERW, is one. The E-bit is always zero when
the F-bit is one, and the F-bit is always zero
when the E-bit is one.

In Chapter 17, “I/O Support Functions”, list-
directed IPL is added to support initial-program
loading (IPL) from devices that are not accessed
by CCWs. IPL from devices that are accessed by
CCWs is designated CCW-type IPL.

* In Appendix C, “Condition-Code Settings™ The
instructions of the extended-translation facility 3
are added.

Summary of Changes in Third
Edition

The third edition of this publication differs from the
previous edition principally by containing the defini-
tions of the DAT-enhancement, HFP-multiply-
add/subtract, and long-displacement facilities and the
message-security assist. The third edition contains
minor clarifications and corrections and also the fol-
lowing significant changes relative to the previous
edition:

* In Chapter 3, “Storage™:

— Clarifications are added to the description of
dynamic-address-translation process.

— The primary address-space-control element
(ASCE) in control register 1 is an attaching
ASCE even when the CPU is in the home-
space mode, and the home ASCE in control
register 13 is an attaching ASCE even when
the CPU is in the secondary-space mode.

— The illustration of the PER code in
Figure 3-13 is corrected.

* In Chapter 4, “Control”:

— The relationships between ETR time (TOD-
clock time), UTC, and International Atomic
Time are described in programming note 3
on page 4-40.

— Code 0 of the SIGNAL PROCESSOR set-
architecture order, and also a CPU reset due
to activation of the load normal key, are
changed to save the current z/Architecture
PSW when switching to the ESA/390 archi-
tectural mode. Also, code 2 of the order is
added, and this restores, for CPUs other
than the one executing SIGNAL PROCES-
SOR, the saved PSW when switching to the
z/Architecture architectural mode, provided
that the saved PSW has not been set to all
zeros by certain resets.

e In Chapter 5, “Program Execution”:

— The | format, the RI format with a M, oper-
and, and the SS format with the I, operand
are added.

— The RSY, RXY, and SIY instruction formats
are added, and the RSE format is deleted.
(All instructions that were of format RSE are
now referred to as being of format RSY.)

— The formation of an operand address using
the 20-bit signed displacement of instruc-
tions of formats RSY, RXY, and SIY is
described.

— The results when a PER instruction-fetching
event occurs along with certain exceptions or
exception conditions are clarified. See “Indi-
cation of PER Events Concurrently with
Other Interruption Conditions” on page 4-32

— The fetch of the address-space-control ele-
ment from the ASN-second-table entry dur-
ing access-register translation is doubleword
concurrent as observed by other CPUs.

— The change bit is not necessarily set to one
currently with the related storage reference,
as observed by other CPUs; it may be set to
one before or after the reference, within cer-
tain limits. See “Storage-Key Accesses” on
page 5-91 for a detailed description of when
the change bit is set.

— The five instructions of the message-security
assist are added to the list of instructions
having multiple-access references.

In Chapter 6, “Interruptions,” the list of conditions
causing a specification exception to be recog-
nized is extended to include those caused by the
message-security assist instructions.

In Chapter 7, “General Instructions”:

— Thirty-nine instructions provided by the long-
displacement facility are added. With the
exception of the new LOAD BYTE instruc-
tion, the instructions added by the long-dis-
placement facility have names and functions
that are the same as existing instructions
(but the mnemonics and opcodes are new).
The new instructions are of formats RSY,
RXY, and SIY and have a 20-bit signed dis-
placement instead of a 12-bit unsigned dis-
placement.

XXXIi

— All previously existing format-RSE and for-
mat-RXE instructions are changed to be of
formats RSY and RXY, respectively, by use
of a previously unused byte in the instruc-
tions. These changes are not marked by a
bar in the margin.

— Five instructions provided by the message-
security assist are added.

— The instruction format of SUPERVISOR
CALL is changed to I.

In Chapter 9, “Floating-Point Overview and Sup-
port Instructions,” four instructions provided by
the long-displacement facility are added. These
are the LOAD (long and short) and STORE (long
and short) instructions.

In Chapter 10, “Control Instructions”:

— The COMPARE AND SWAP AND PURGE
(CSPG) and INVALIDATE DAT TABLE
ENTRY instructions provided by the DAT-
enhancement facility are added. CSPG oper-
ates on a doubleword operand in storage.

— The definition of LOAD ADDRESS SPACE
PARAMETERS is clarified.

— The LOAD REAL ADDRESS (LRAY) instruc-
tion provided by the long-displacement facil-
ity is added.

— All previously existing format-RSE instruc-
tions are changed to be of format RSY by

— Bit 29 of word 6 of the path-management-
control word (PMCW) is defined as the mea-
surement-block-format control.

— Bit 30 of word 6 of the PMCW is defined as
the extended-measurement-word-mode
enablement bit.

— The definition of words 10-11 (words 0-1 of
the model-dependent area) are changed to
contain a measurement-block address, when
the extended-I/O-measurement-block facility
is installed.

In Chapter 16, “I/O Interruptions”, the interrup-
tion-response block (IRB) is extended to include
the extended-measurement word.

In Chapter 17, “I/O Support Functions”:

— The requirement that the measurement block
be updated when secondary status is
accepted is clarified.

— The extended-measurement-block facility is
added.

— The extended-measurement-word facility is
added.

In Chapter 18, “Hexadecimal-Floating-Point
Instructions,” the MULTIPLY AND ADD (four
instructions) and MULTIPLY AND SUBTRACT
(four instructions) instructions provided by the
HFP-multiply-add/subtract facility are added.

use of a previously unused byte in the
instructions. These changes are not marked
by a bar in the margin.

The above changes may affect other chapters
besides the ones listed. All technical changes to the
text or to an illustration are indicated by a vertical line

. , to the left of the change.
— The description of the bits set by STORE

FACILITY LIST is clarified, and new bits are
assigned.

Summary of Changes in Second

e In Chapter 14, “I/O Instructions”: Edition
— The definition of MODIFY SUBCHANNEL is

modified. The second edition of this publication differs from the

previous edition mainly by containing clarifications
and corrections. The significant changes are as fol-
lows:

— The definition of SET CHANNEL MONITOR
is modified.

e In Chapter 15, “Basic I/0O Functions,” the follow-
ing changes are made to the subchannel-infor- .
mation-block (SCHIB):

In Chapter 1, “Introduction”:

— Summaries of DIVIDE LOGICAL and MULTI-
PLY LOGICAL, TEST ADDRESSING MODE,
the set-architecture order of SIGNAL PRO-

XXXii z/Architecture Principles of Operation

CESSOR, and STORE FACILITY LIST are
added or improved.

— An extensive summary of the input/output
enhancements placed in z/Architecture is
added.

* In Chapter 3, “Storage”:

— Definitions of absolute locations 0-23 are
deleted since they pertain only to an
ESA/390 initial program load.

— The definition of real locations 200-203,
stored in by STORE FACILITY LIST, is cor-
rected to state that bit 16 indicates the
extended-translation facility 2.

e In Chapter 4, “Control,” a description of unas-
signed fields in the PSW is corrected to state that
bit 4 is unassigned and bit 31 is assigned.

e In Chapter 5, “Program Execution,” the RSL for-
mat and an RIL format with an M, field are
added.

* In Chapter 7, “General Instructions”:

— The definition of BRANCH AND SET MODE
is corrected to state that bit 63 of the R, gen-
eral register remains unchanged in the 24-bit
or 31-bit addressing mode; the bit is not set
to zero.

— The definitions of PACK ASCII, PACK UNI-
CODE, UNPACK ASCII, and UNPACK UNI-
CODE are clarified.

— It is clarified that the following instructions
perform multiple-access references to their
storage operands:

— CHECKSUM

— COMPARE AND FORM CODEWORD
— CONVERT UNICODE TO UTF-8

— CONVERT UTF-8 TO UNICODE

— ltis clarified that the following instructions do
not necessarily process their storage oper-
ands left to right as observed by other CPUs:
MOVE LONG, MOVE LONG EXTENDED,
and MOVE LONG UNICODE. Special pad-
ding characters of MOVE LONG and MOVE
LONG EXTENDED specify whether left-to-
right processing should be performed, as
observed by other CPUs, and whether the
data being moved should or should not be

placed in the cache for availability for subse-
quent processing.

* In Chapter 10, “Control Instructions,” it is clarified
that the following instructions perform multiple-
access references to their storage operands:

— LOAD ADDRESS SPACE PARAMETERS
— RESUME PROGRAM
— STORE SYSTEM INFORMATION

Chapters 13-17 contain many clarifying changes, all
indicated by a vertical line in the margin, in addition
to the significant changes listed below.

¢ In Chapter 13, “I/O Overview,” statements about
the suspend flag in a CCW are clarified to
describe the flag being specified as a one and
being valid because of a one value of the sus-
pend control in the associated ORB.

e In Chapter 14, “I/O Instructions,” the results of
MODIFY SUBCHANNEL when the device-num-
ber-valid bit at the designated subchannel is zero
are corrected.

e In Chapter 15, “Basic I/0O Functions”:

— It is clarified that unlimited prefetching of
data and IDAWSs associated with the current
and prefetched CCWs is allowed indepen-
dent of the value of the prefetch control in the
associated ORB.

— A specified control-unit-priority number is
ignored if the channel-subsystem-1/O-prior-
ity facility is not operational due to an opera-
tor action.

— It is clarified that address-limit checking
applies to data locations and not to locations
containing a CCW or IDAW.

¢ In Chapter 16, “I/O Interruptions,” the form of the
address stored in the failing-storage-address
field is described in terms of the format-2-IDAW
control instead of an addressing mode.

e In Chapter 17, “I/O Support Functions”:

— The introduction to the channel-subsystem
monitoring facilities is clarified.

— References to the measurement block by the
measurement-block-update facility are sin-
gle-access references and appear to be

Xxxiii

word concurrent as observed by CPUs. They = The above changes may affect other chapters
do not appear to be block concurrent. besides the ones listed.

— The description of the channel-subsystem-
I/O-priority facility is corrected by including
mention of control-unit priority for fibre-chan-
nel-attached control units.

XXXiV z/Architecture Principles of Operation

Chapter 1. Introduction

Highlights of Original z/Architecture 1-1
General Instructions for 64-Bit Integers. 1-2
Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-5

Modal Instructions 1-5
Effects on Bits 0-31 of a General Register . 1-5
Input/Output. 1-5

Additions to z/Architecture. 1-7
ASN-and-LX-Reuse Facility. 1-7
Compare-and-Swap-and-Store Facility 1-7
Compare-and-Swap-and-Store Facility 2 1-7
Conditional-SSKE Facility 1-7
Configuration-Topology Facility 1-7
DAT-Enhancement Facility 1. 1-7
DAT-Enhancement Facility 2. 1-8
Decimal-Floating-Point Facility 1-8
Decimal-Floating-Point-Rounding Facility 1-8
Enhanced-DAT Facility 1-8
ETF2-Enhancement Facility 1-9
ETF3-Enhancement Facility 1-9
Execute-Extensions Facility. 1-9
Extended-Immediate Facility 1-9
Extended-1/0-Measurement-Block Facility ... 1-9
Extended-1/0-Measurement-Word Facility .. 1-10
Extended-Translation Facility 2. 1-10
Extended-Translation Facility 3........... 1-10
Extract-CPU-Time Facility 1-10
Floating-Point-Support-Sign-Handling Facility 1-10
FPR-GR-Transfer Facility 1-11

General-Instructions-Extension Facility 1-11
HFP Multiply-and-Add/Subtract Facility 1-11
HFP-Unnormalized-Extensions Facility 1-11
IEEE-Exception-Simulation Facility. 1-11
List-Directed Initial Program Load. 1-12
Long-Displacement Facility. 1-12
Message-Security Assist. 1-12
Message-Security-Assist Extension 1..... .. 1-12
Message-Security-Assist Extension 2. 1-12
Modified CCW Indirect Data Addressing
Facility.o 1-13
Move-With-Optional-Specifications Facility. . . 1-13
Multiple-Subchannel-Set Facility. 1-13
Parsing-Enhancement Facility 1-13
PER-3 Facility: 1-14
PFPO Facility 1-14
Restore-Subchannel Facility. 1-14
Server-Time-Protocol Facility:. 1-14
Store-Clock-Fast Facility. 1-14
Store-Facility-List-Extended Facility:. 1-14
TOD-Clock-Steering Facility 1-14
The ESA/390Base. 1-15
The ESA/370 and 370-XABase 1-20
System Program. 1-22
Compatibility 1-22

Compatibility among z/Architecture Systems . 1-22
Compatibility between z/Architecture and

ESA/B90 1-22
Control-Program Compatibility 1-22
Problem-State Compatibility 1-22

Availability. 1-23

This publication provides, for reference purposes, a
detailed description of z/Architecture.™

The architecture of a system defines its attributes as
seen by the programmer, that is, the conceptual
structure and functional behavior of the machine, as
distinct from the organization of the data flow, the log-
ical design, the physical design, and the performance
of any particular implementation. Several dissimilar
machine implementations may conform to a single
architecture. When the execution of a set of pro-
grams on different machine implementations pro-
duces the results that are defined by a single
architecture, the implementations are considered to
be compatible for those programs.

© Copyright IBM Corp. 1990-2008

Highlights of Original
z/Architecture

z/Architecture is the next step in the evolution from
the System/360 to the System/370", System/370
extended architecture (370-XA), Enterprise Systems
Architecture/370™ (ESA/370™), and Enterprise
Systems Architecture/390° (ESA/390™). z/Architec-
ture includes all of the facilities of ESA/390 except for
the asynchronous-pageout, asynchronous-data-
mover, program-call-fast, and vector facilities.
z/Architecture also provides significant extensions,
as follows:

1-1

» Sixty-four-bit general registers and control regis-
ters.

* A 64-bit addressing mode, in addition to the
24-bit and 31-bit addressing modes of ESA/390,
which are carried forward to z/Architecture.

Both operand addresses and instruction
addresses can be 64-bit addresses. The pro-
gram-status word (PSW) is expanded to 16 bytes
to contain the larger instruction address. The
PSW also contains a newly assigned bit that
specifies the 64-bit addressing mode.

* Up to three additional levels of dynamic-address-
translation (DAT) tables, called region tables, for
translating 64-bit virtual addresses.

A virtual address space may be specified either
by a segment-table designation as in ESA/390 or
by a region-table designation, and either of these
types of designation is called an address-space-
control element (ASCE). An ASCE may alterna-
tively be a real-space designation that causes
virtual addresses to be treated simply as real
addresses without the use of DAT tables.

* An 8K-byte prefix area for containing larger old
and new PSWs and register save areas.

* A SIGNAL PROCESSOR order for switching
between the ESA/390 and z/Architecture archi-
tectural modes.

Initial program loading sets the ESA/390 archi-
tectural mode. The new SIGNAL PROCESSOR
order then can be used to set the z/Architecture
mode or to return from Zz/Architecture to
ESA/390. This order causes all CPUs in the con-
figuration always to be in the same architectural
mode.

e Many new instructions, many of which operate
on 64-bit binary integers

Some of the new instructions that do not operate on
64-bit binary integers have also been added to
ESA/390.

All of the ESA/390 instructions, except for those of
the four facilities named above, are included in
z/Architecture.

The bit positions of the general registers and control

registers of z/Architecture are numbered 0-63. An
ESA/390 instruction that operates on bit positions

1-2 z/Architecture Principles of Operation

0-31 of a 32-bit register in ESA/390 operates instead
on bit positions 32-63 of a 64-bit register in z/Archi-
tecture.

z/Architecture was announced in October, 2000. The
remainder of this section summarizes the original
contents of z/Architecture. Subsequent additions are
described in “Additions to Zz/Architecture” on
page 1-7.

General Instructions for 64-Bit
Integers

The 32-bit-binary-integer instructions of ESA/390
have new analogs in z/Architecture that operate on
64-bit binary integers. There are two types of ana-
logs:

e Analogs that use two 64-bit binary integers to
produce a 64-bit binary integer. For example, the
ESA/390 ADD instruction (A for a storage-to-reg-
ister operation or AR for a register-to-register
operation) has the analogs AG (adds 64 bits from
storage to the contents of a 64-bit general regis-
ter) and AGR (adds the contents of a 64-bit gen-
eral register to the contents of another 64-bit
general register). These analogs are distin-
guished by having “G” in their mnemonics.

* Analogs that use a 64-bit binary integer and a
32-bit binary integer to produce a 64-bit binary
integer. The 32-bit integer is either sign-extended
or extended on the left with zeros, depending on
whether the operation is signed or unsigned,
respectively. For example, the ESA/390 ADD (A
or AR) instruction has the analogs AGF (adds 32
bits from storage to the contents of a 64-bit gen-
eral register) and AGFR (adds the contents of bit
positions 32-63 of a 64-bit general register to the
contents of another 64-bit general register).
These analogs are distinguished by having “GF”
in their mnemonics.

Other New General Instructions

The other additional or significantly enhanced gen-
eral instructions of z/Architecture are highlighted as
follows:

e ADD LOGICAL WITH CARRY and SUBTRACT
LOGICAL WITH BORROW operate on either
32-bit or 64-bit unsigned binary integers and

include a carry or borrow, as represented by the
leftmost bit of the two-bit condition code in the
PSW, in the computation. This can improve the
performance of operating on extended-precision
integers (integers longer than 64 bits).

AND IMMEDIATE and OR IMMEDIATE combine
a two-byte immediate operand with any of the
two bytes on two-byte boundaries in a 64-bit gen-
eral register.

BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE are enhanced so that
they set bit 63 of the R, general register to one if
the current addressing mode is the 64-bit mode,
and they set the 64-bit addressing mode if bit 63
of the R, general register is one. This allows
“pointer-directed” linkages between programs in
different addressing modes, including any of the
24-bit, 31-bit, and 64-bit modes.

BRANCH RELATIVE AND SAVE LONG and
BRANCH RELATIVE ON CONDITION LONG are
like the BRANCH RELATIVE AND SAVE and
BRANCH RELATIVE ON CONDITION instruc-
tions of ESA/390 except that the new instructions
use a 32-bit immediate field. This increases the
target range available through relative branching.

COMPARE AND FORM CODEWORD is
enhanced so that, in the 64-bit addressing mode,
the comparison unit is six bytes instead of two
and the resulting codeword is eight bytes instead
of four. UPDATE TREE is enhanced so that, in
the 64-bit addressing mode, a node is 16 bytes
instead of eight and the codeword in a node is
eight bytes instead of four. This improves the per-
formance of sorting records having long keys.

DIVIDE LOGICAL uses a 64-bit or 128-bit
unsigned binary dividend and a 32-bit or 64-bit
unsigned binary divisor, respectively, to produce
a 32-bit or 64-bit quotient and remainder, respec-
tively. MULTIPLY LOGICAL uses a 32-bit or
64-bit unsigned binary multiplicand and multiplier
to produce a 64-bit or 128-bit product, respec-
tively.

DIVIDE SINGLE divides a 64-bit dividend by a
32-bit or 64-bit divisor and produces a 64-bit
quotient and remainder. MULTIPLY SINGLE is
enhanced so it can multiply a 64-bit multiplicand
by a 32-bit or 64-bit multiplier and produce a
64-bit product.

EXTRACT PSW extracts bits 0-63 of the current
PSW to allow determination of the current
machine state, for example, determination of
whether the CPU is in the problem state or the
supervisor state.

INSERT IMMEDIATE inserts a two-byte immedi-
ate operand into a 64-bit general register on any
of the two-byte boundaries in the register. LOAD
LOGICAL IMMEDIATE does the same and also
clears the remainder of the register.

LOAD ADDRESS RELATIVE LONG forms an
address relative to the current (unupdated)
instruction address by means of a signed 32-bit
immediate field.

LOAD LOGICAL THIRTY ONE BITS places the
rightmost 31 bits of either a general register or a
word in storage, with 33 zeros appended on the
left, in a general register.

LOAD MULTIPLE DISJOINT loads the leftmost
32 bits of each register in a range of general reg-
isters from one area in storage and the rightmost
32 bits of each of those registers from another
area in storage. This is for use in place of a
LOAD MULTIPLE HIGH instruction and a 32-bit
LOAD MULTIPLE instruction when one of the
storage areas is addressed by one of the regis-
ters loaded.

LOAD MULTIPLE HIGH and STORE MULTIPLE
HIGH load or store the leftmost 32 bits of each
register in a range of general registers, allowing
augmentation of existing programs that load or
store the rightmost 32 bits by means of LOAD
MULTIPLE and STORE MULTIPLE. (Sixty-four-
bit forms of LOAD MULTIPLE and STORE MUL-
TIPLE also are provided.)

LOAD PAIR FROM QUADWORD and STORE
PAIR TO QUADWORD operate between an
even-odd pair of 64-bit general registers and a
quadword in storage (16 bytes aligned on a
16-byte boundary). These instructions provide
quadword consistency (all bytes appear to be
loaded or stored concurrently in a multiple-CPU
system). (Only the 64-bit form of COMPARE
DOUBLE AND SWAP also provides quadword
consistency.)

LOAD REVERSED and STORE REVERSED
load or store a two-byte, four-byte, or eight-byte
unit in storage with the left-to-right sequence of
the bytes reversed. LOAD REVERSED also can

Chapter 1. Introduction 1-3

move a four-byte or eight-byte unit between two
general registers. These operations allow con-
version between “little-endian” and “big-endian”
formats.

e PERFORM LOCKED OPERATION is enhanced
with two more sets of function codes, with each
set providing six different operations. One of the
additional sets provides operations on 64-bit
operands in 64-bit general registers, and the
other provides operations on 128-bit operands in
a parameter list.

* ROTATE LEFT SINGLE LOGICAL obtains 32 bits
or 64 bits from a general register, rotates them
(the leftmost bit replaces the rightmost bit), and
places the result in another general register (a
nondestructive rotate).

* SET ADDRESSING MODE can set any of the
24-bit, 31-bit, and 64-bit addressing modes.

* SHIFT LEFT SINGLE, SHIFT LEFT SINGLE
LOGICAL, SHIFT RIGHT SINGLE, and SHIFT
RIGHT SINGLE LOGICAL are enhanced with
64-bit forms that obtain the source operand from
one general register and place the result oper-
and in another general register (a nondestructive
shift).

e TEST ADDRESSING MODE sets the condition
code to indicate whether bits 31 and 32 of the
current PSW specify the 24-bit, 31-bit, or 64-bit
addressing mode.

* TEST UNDER MASK HIGH and TEST UNDER
MASK LOW, which are ESA/390 instructions, are
given the alternative name TEST UNDER MASK,
and two additional forms are added so that a
two-byte immediate operand can be used to test
the bits of two bytes located on any of the two-
byte boundaries in a 64-bit general register. (The
ESA/390 instruction TEST UNDER MASK, which
uses a one-byte immediate operand to test a
byte in storage, continues to be provided.)

Floating-Point Instructions

The z/Architecture floating-point instructions are the
same as in ESA/390 except that instructions are
added for converting between 64-bit signed binary
integers and either hexadecimal or binary floating-
point data. These new instructions have “G” in their
mnemonics.

1-4 z/Architecture Principles of Operation

Control Instructions

The new or enhanced control instructions of z/Archi-
tecture are highlighted as follows:

EXTRACT AND SET EXTENDED AUTHORITY
is a privileged instruction for changing the
extended authorization index in a control register.
This enables real-space designations to be used
more efficiently by means of access lists.

EXTRACT STACKED REGISTERS is enhanced
to extract optionally all 64 bits of the contents of
one or more saved general registers.

EXTRACT STACKED STATE is enhanced to
extract optionally the entire contents of the saved
PSW, including a 64-bit instruction address.

LOAD CONTROL and STORE CONTROL are
enhanced for operating optionally on 64-bit con-
trol registers.

LOAD PSW uses an eight-byte storage operand
as in ESA/390 and expands this operand to a
16-byte z/Architecture PSW.

LOAD PSW EXTENDED directly loads a 16-byte
PSW.

LOAD REAL ADDRESS in its ESA/390 form and
in the 24-bit or 31-bit addressing mode operates
as in ESA/390 if the translation is successful and
the obtained real address has a value less than
2G bytes. LOAD REAL ADDRESS in its ESA/390
form and in the 64-bit addressing mode, or in its
enhanced z/Architecture form in any addressing
mode, loads a 64-bit real address.

LOAD USING REAL ADDRESS and STORE
USING REAL ADDRESS are enhanced to have
optionally 64-bit operands.

SIGNAL PROCESSOR has a new order that can
be used to switch all CPUs in the configuration
either from the ESA/390 architectural mode to
the z/Architecture architectural mode or from
z/Architecture to ESA/390. (A system that is to
operate using z/Architecture must first be IPLed
in the ESA/390 mode.)

STORE FACILITY LIST is a privileged instruction
that stores at real location 200 an indication of
whether z/Architecture is installed and of
whether it is active. This instruction is added also
to ESA/390 and also stores an indication of

whether the new z/Architecture instructions that
have been added to ESA/390 are available. Real
location 200 has previously contained all zeros in
most systems and normally can be examined by
a problem-state program whether or not STORE
FACILITY LIST is installed. The information
stored at real location 200 also indicates whether
the extended-translation facility 2 is installed.

e STORE REAL ADDRESS is like LOAD REAL
ADDRESS except that STORE REAL ADDRESS
stores the resulting address instead of placing it
in a register.

e TRACE is enhanced to record optionally the con-
tents of 64-bit general registers.

Trimodal Addressing

“Trimodal addressing” refers to the ability to switch
between the 24-bit, 31-bit, and 64-bit addressing
modes. This switching can be done by means of:

* The old instructions BRANCH AND SAVE AND
SET MODE and BRANCH AND SET MODE.
Both of these instructions set the 64-bit address-
ing mode if bit 63 of the R, general register is
one. If bit 63 is zero, the instructions set the
24-bit or 31-bit addressing mode if bit 32 of the
register is zero or one, respectively.

* The new instruction SET ADDRESSING MODE
(SAM24, SAM31, and SAM64). The instruction
sets the 24-bit, 31-bit, or 64-bit addressing mode
as determined by the operation code.

Modal Instructions

Trimodal addressing affects the general instructions
only in the manner in which logical storage
addresses are handled, except as follows.

* The instructions BRANCH AND LINK, BRANCH
AND SAVE, BRANCH AND SAVE AND SET
MODE, BRANCH AND SET MODE, and
BRANCH RELATIVE AND SAVE place informa-
tion in bit positions 32-39 of general register R,
as in ESA/390 in the 24-bit or 31-bit addressing
mode or place address bits in those bit positions
in the 64-bit addressing mode. The new instruc-
tion BRANCH RELATIVE AND SAVE LONG
does the same.

¢ The instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE place a

one in bit position 63 of general register R, in the
64-bit addressing mode. In the 24-bit or 31-bit
mode, BRANCH AND SAVE AND SET MODE
sets bit 63 to zero, and BRANCH AND SET
MODE leaves it unchanged.

* Certain instructions leave bits 0-31 of a general
register unchanged in the 24-bit or 31-bit
addressing mode but place or update address or
length information in them in the 64-bit address-
ing mode. These are listed in programming note
1 on page 7-7 and are sometimes called modal
instructions.

Effects on Bits 0-31 of a General Register
Bits 0-31 of general registers are changed by two
types of instructions. The first type is a modal instruc-
tion (see the preceding section) when the instruction
is executed in the 64-bit addressing mode. The sec-
ond type is an instruction having, independent of the
addressing mode, either a 64-bit result operand in a
single general register or a 128-bit result operand in
an even-odd general-register pair.

Most of the instructions of the second type are indi-
cated by a “G,” either alone or in “GF,” in their mne-
monics. The other instructions that change or may
change bits 0-31 of a general register regardless of
the current addressing mode are listed in program-
ming note 2 on page 7-8. All of the instructions of the
second type are sometimes referred to as “G-type”
instructions.

If a program is not executed in the 64-bit addressing
mode and does not contain a G-type instruction, it
cannot change bits 0-31 of any general register.

Input/Output

Additional 1/O functions and facilities are provided
when z/Architecture is installed. They are provided in
both the ESA/390 and the z/Architecture architectural
mode and are as follows:

* Indirect data addressing is enhanced by the pro-
vision of a doubleword format-2 IDAW that is
intended to allow operations on data at or above
the 2G-byte absolute-address boundary in
z/Architecture. The previously existing IDAW, a
word containing a 31-bit address, is now called a
format-1 IDAW. The format-2 IDAW contains a
64-bit address. A bit in the operation-request
block (ORB) associated with a channel program

Chapter 1. Introduction 1-5

1-6

specifies whether the program uses format-1 or
format-2 IDAWSs. A further enhancement is the
ability of all format-2 IDAWs of a channel pro-
gram to specify either 2K-byte or 4K-byte data
blocks, as determined by another bit in the ORB.
The use of 4K-byte blocks improves the effi-
ciency of data transfers.

The FICON®-channel facility provides the capa-
bilities of attaching FICON-I/O-interface and
FICON-converted-1/O-interface channel paths
and of fully utilizing these channel-path types.
FICON channel paths can significantly enhance
overall data throughput by providing increased
data-transfer rates in comparison to ESCON
channel paths and by allowing multiple com-
mands and associated data to be “streamed” to
control units, thus further improving perfor-
mance. The facility supports the following addi-
tional control mechanisms:

— The modification-control bit in the ORB
allows the program to optimize the perfor-
mance of FICON channel paths when
dynamically modifying channel programs.

— The synchronization-control bit in the ORB
ensures data integrity along with maximum
channel-path performance by delaying the
execution of a write command until the com-
pletion of an immediately preceding read
command when performing unlimited
prefetching of CCWs and when the data to
be written may be the data read.

— The streaming-mode-control bit in the ORB
allows the program to prevent command
streaming in cases that require such preven-
tion.

— The secondary-CCW-address field in the
extended-status word assists in the recovery
of channel programs that terminate abnor-
mally when command streaming to a control
unit is being performed. The field identifies a
CCW that failed at the control unit.

The ORB-extension facility expands the size of
the ORB from three words to eight words. This
makes fields available for use by the channel-
subsystem-I/O-priority facility.

The channel-subsystem-I/O-priority facility
allows the program to establish a priority relation-
ship among subchannels that have pending I/O
operations. The priority relationship specifies the

z/Architecture Principles of Operation

order in which 1/O operations are initiated by the
channel subsystem. Additionally, for fibre-chan-
nel-attached control units, the facility allows the
program to specify the priority in which I/O oper-
ations pending at the control unit are performed.

The input/output enhancements are further high-
lighted below by describing how they affect the 1/0
chapters.

In Chapter 13, “I/O Overview,” FICON and
FICON-converted I/O interfaces and the frame-
multiplex mode are introduced.

In Chapter 14, “I/O Instructions”:

— The CANCEL SUBCHANNEL instruction is
described.

— TEST PENDING INTERRUPTION, when the
second-operand address is zero, stores a
three-word I/O-interruption code at real loca-
tions 184-195. The new third word contains
an interruption-identification word that further
identifies the source of the I/O interruption.

In Chapter 15, “Basic I/0O Functions”:

— The ORB is extended to eight words and
newly contains a streaming-mode control,
modification control, synchronization con-
trol, format-2-IDAW control, 2K-IDAW con-
trol, ORB-extension control, channel-
subsystem priority, and control-unit priority.

— A doubleword format-2 IDAW and 4K-byte
data blocks optionally designated by format-
2 IDAWs are added.

In Chapter 16, “I/O Interruptions”:

— A secondary-CCW-address-validity bit and
failing-storage-address-format bit are added
to the extended-report word.

— A two-word failing-storage address and a
secondary-CCW address are added to the
format-0 extended-status word.

In Chapter 17, “I/O Support Functions”:

— Control-unit-defer time is added. This has an
effect on the device-connect time and
device-disconnect time in the measurement
block.

— References to the measurement block by the
measurement-block-update facility are sin-

gle-access references and appear to be
word concurrent as observed by CPUs.

— Device-active-only time is added to the mea-
surement block.

— The channel-subsystem-I/O-priority facility,
providing channel-subsystem priority and
control-unit priority, is added.

Additions to z/Architecture

z/Architecture was announced in October, 2000. Any
extension added subsequently is summarized below
and has the date of its announcement at the end of
its summary.

ASN-and-LX-Reuse Facility

The ASN-and-LX-reuse facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means by which an address-space number
(ASN) that is used in certain space-switching linkage
instructions may be safely reused. The facility also
adds a 32-bit program-call (PC) number, and it also
provides the means by which the linkage index that is
used in PC-number translation may be safely reused.
The facility provides the following instructions:

EXTRACT PRIMARY ASN AND INSTANCE
EXTRACT SECONDARY ASN AND INSTANCE
PROGRAM TRANSFER WITH INSTANCE
SET SECONDARY ASN WITH INSTANCE

(May, 2004)

Compare-and-Swap-and-Store
Facility

The compare-and-swap-and-store facility may be
available on a model implementing z/Architecture.
The facility performs compare-and-swap operations
on 4- or 8-byte operands using interlocked update. If
the operands are equal, a subsequent store opera-
tion of 1, 2, 4, or 8 bytes is performed. The facility
provides the COMPARE AND SWAP AND STORE
instruction. (April, 2007)

Compare-and-Swap-and-Store
Facility 2

The compare-and-swap-and-store facility 2 may be
available on a model implementing z/Architecture.
The facility extends the compare-and-swap-and-store
facility by providing a 16-byte compare-and-swap
functon and a 16-byte store operation.
(February, 2008)

Conditional-SSKE Facility

The conditional-SSKE facility may be available on a
model implementing z/Architecture. The facility pro-
vides performance improvements for the SET STOR-
AGE KEY EXTENDED instruction. (April, 2007)

Configuration-Topology Facility

The configuration-topology facility may be available
on a model implementing z/Architecture. The facility
provides additional topology awareness to the pro-
gram such that certain optimizations can be per-
formed to improve cache hit ratios and thereby
improve overall performance. The facility provides:

e The PERFORM TOPOLOGY FACILITY (PTF)
control instruction.

* A new system-information block (SYSIB 15.1.2)
stored by the STORE SYSTEM INFORMATION
instruction.

(February, 2008)

DAT-Enhancement Facility 1

The DAT-enhancement facility 1 may be available on
a model implementing z/Architecture. The facility pro-
vides the following instructions:

COMPARE AND SWAP AND PURGE (CSPG)
INVALIDATE DAT TABLE ENTRY

COMPARE AND SWAP AND PURGE (CSPG) pro-
vides function similar to that of COMPARE AND
SWAP AND PURGE (CSP), but CSPG has 64-bit
operands whereas CSP has 32-bit operands.

INVALIDATE DAT TABLE ENTRY provides the
means by which one or more region-table and seg-

Chapter 1. Introduction 1-7

ment-table entries in storage may be invalidated, and
the corresponding TLB entries may be purged. The
instruction provides an invalidation-and-clearing
operation which invalidates and clears entries based
on a specified virtual address, or a clear-by-ASCE
operation which clears TLB entries based on the
specified ASCE. (June, 2003)

DAT-Enhancement Facility 2

The DAT-enhancement facility 2 may be available on
a model implementing z/Architecture. When the DAT-
enhancement facility 2 is installed, the LOAD PAGE-
TABLE-ENTRY ADDRESS instruction is available.
Given a virtual address, the LOAD PAGE-TABLE-
ENTRY ADDRESS instruction returns the 64-bit real
address of the corresponding page-table entry. The
address-space-control mode used by the dynamic-
address-translation process is specified in the M,
field of the instruction. (September, 2005)

Decimal-Floating-Point Facility

The decimal-floating-point facility supports three dec-
imal-floating-point (DFP) data formats and provides
54 new instructions to operate on data in these for-
mats. The formats: 32-bit (short), 64-bit (long), and
128-bit (extended), were developed in collaboration
with the IEEE floating-point working group. (April,
2007)

Decimal-Floating-Point-Rounding
Facility

The decimal-floating-point-rounding facility provides
a 3-bit DFP rounding mode field in the floating-point
control (FPC) register, and the instruction SET DFP
ROUNDING MODE, which may be used to set this
field. The DFP rounding mode can specify any of
eight rounding methods, including the five required
by the IEEE floating-point working group.

The DFP rounding mode is used by PFPO and the
decimal-floating-point instructions. (April, 2007)

Enhanced-DAT Facility

The enhanced-DAT facility may be available on mod-
els implementing z/Architecture. When the facility is
installed and enabled, DAT translation may produce

1-8 z/Architecture Principles of Operation

either a page-frame real address or a segment-frame
absolute address, determined by the STE-format
control in the segment-table entry.

When the facility is installed in a configuration, a new
bit in control register 0 enables the facility.

Note: The term enhanced DAT applies is used per-
vasively in this document to describe the condition of
when the enhanced-DAT facility is installed in the
configuration and enabled by control register 0. See
“Enhanced-DAT Terminology:” on page 3-37 for
details on this terminology.

When enhanced DAT applies, the following additional
function is available in the DAT process:

* A DAT-protection bit is added to region-table
entries, providing function similar to the DAT-pro-
tection bits in the segment- and page-table
entries.

* A STE-format control is added to the segment-
table entry. When the STE-format control is zero,
DAT proceeds as is currently defined, except that
a change-recording override in the page-table
entry indicates whether setting of the change bit
may be bypassed for the page.

* When the STE-format control is one, the seg-
ment-table entry also contains the following:

— A segment-frame absolute address (rather
than a page-table origin) specifying the
absolute storage location of the 1M-byte
block.

— Access-control bits and a fetch-protection bit
which optionally may be used in lieu of the
corresponding bits in the segment’s individ-
ual storage keys

— A bit which determines the validity of the
access-control bits and a fetch-protection bit
in the segment-table entry

— A change-recording override which indicates
whether setting of the change bit may be
bypassed in the segment’s individual storage
keys.

The facility adds the PERFORM FRAME MANAGE-
MENT FUNCTION control instruction. The facility
includes enhancements or changes to the following
control instructions:

* LOAD PAGE-TABLE-ENTRY ADDRESS
* MOVE PAGE
» SET STORAGE KEY EXTENDED

(February, 2008)

ETF2-Enhancement Facility

The ETF2-enhancement facility may be available on
a model implementing z/Architecture. The facility
includes modifications to the following instructions:

* New function is added to the TRANSLATE ONE
TO ONE, TRANSLATE ONE TO TWO, TRANS-
LATE TWO TO ONE, and TRANSLATE TWO TO
TWO instructions, allowing the test-character
comparison to be bypassed.

e For TRANSLATE TWO TO ONE and TRANS-
LATE TWO TO TWO, the alignment require-
ments for the translate table are relaxed.

(September, 2005)

ETF3-Enhancement Facility

The ETF3-enhancement facility may be available on
a model implementing z/Architecture. The facility pro-
vides improved well-formedness checking for the fol-
lowing instructions:

CONVERT UTF-16 TO UTF-32
CONVERT UTF-16 TO UTF-8
CONVERT UTF-8 TO UTF-16
CONVERT UTF-8 TO UTF-32

(September, 2005)

Execute-Extensions Facility

The execute-extensions facility may be available on a
model implementing z/Architecture. The facility pro-
vides the EXECUTE RELATIVE LONG instruction.
(February, 2008)

Extended-Immediate Facility

The extended-immediate facility may be available on
models implementing z/Architecture. The facility pro-

vides 32-bit immediate-operand versions of the fol-
lowing instructions:

ADD IMMEDIATE

ADD LOGICAL IMMEDIATE

AND IMMEDIATE

COMPARE IMMEDIATE
COMPARE LOGICAL IMMEDIATE
EXCLUSIVE OR IMMEDIATE
INSERT IMMEDIATE

LOAD IMMEDIATE

LOAD LOGICAL IMMEDIATE

OR IMMEDIATE

SUBTRACT LOGICAL IMMEDIATE

Other new instructions added as a part of the
extended-immediate facility include the following:

FIND LEFTMOST ONE

LOAD AND TEST (32-bit and 64-bit RXY format)
LOAD BYTE (RRE format)

LOAD HALFWORD (RRE format)

LOAD LOGICAL CHARACTER (64-bit RRE for-
mat, and 32-bit RXY and RRE formats)

LOAD LOGICAL HALFWORD (64-bit RRE for-
mat, and 32-bit RXY and RRE formats)

(September, 2005)

Extended-l/O-Measurement-Block
Facility

The extended-lI/O-measurement-block facility may be
available on models implementing z/Architecture.
The facility includes the following features:

* A new format of the channel-measurement block.
The new measurement block, termed a format-1
channel-measurement block, is expanded to 64
bytes and is addressed using a separate mea-
surement-block address for each subchannel.
The new measurement-block format provides
additional measurement information and the flex-
ibility to store the measurement blocks in non-
contiguous, real storage.

e The previously existing channel-measurement
block is termed a format-0O channel-measure-
ment block. A device-busy-time field is added to
the format-0 channel-measurement block.

(June, 2003)

Chapter 1. Introduction 1-9

Extended-l/O-Measurement-Word
Facility

The extended-I/O-measurement-word facility may be
available on models implementing z/Architecture.
The extended-measurement-word (EMW) is an
extension to the interruption-response block (IRB)
and allows channel-measurement data to be pro-
vided on an I/O operation basis. This reduces pro-
gram overhead by alleviating the previous
requirement that the program fetch the measurement
block before and after an operation and calculate the
difference between the respective measurement data
values. (June, 2003)

Extended-Translation Facility 2

The extended-translation facility 2 may be available
on a model implementing z/Architecture. The facility
performs operations on double-byte, ASCII, and dec-
imal data. The double-byte data may be Unicode®
data — data that uses the binary codes of the Uni-
code Worldwide Character Standard and enables the
use of characters of most of the world’s written lan-
guages. The facility provides the following instruc-
tions:

COMPARE LOGICAL LONG UNICODE
MOVE LONG UNICODE
PACK ASCII

PACK UNICODE

TEST DECIMAL
TRANSLATE ONE TO ONE
TRANSLATE ONE TO TWO
TRANSLATE TWO TO ONE
TRANSLATE TWO TO TWO
UNPACK ASCII

UNPACK UNICODE

The extended-translation facility 2 is called facility 2
since an extended-translation facility, now called facil-
ity 1, was introduced in ESA/390. Facility 1 is stan-
dard in z/Architecture. Facility 1 provides the
instructions:

CONVERT UNICODE TO UTF-8
CONVERT UTF-8 TO UNICODE
TRANSLATE EXTENDED

For when either or both of facility 1 and facility 2 are
not installed on the machine, both facilities are simu-

1-10

z/Architecture Principles of Operation

lated by the MVS CSRUNIC macro instruction, which
is provided in 0S/390° Release 10 and z/OS®.

0S/390 MVS Assembler Services Reference,
GC28-1910-10, contains programming requirements,
register information, syntax, return codes, and exam-
ples for the CSRUNIC macro instruction.

When CSRUNIC is used, the program exceptions
listed in this publication do not cause program inter-
ruptions; instead, the exception conditions are indi-
cated by CSRUNIC by means of return codes, as
described in GC28-1910-10. (October, 2000)

Extended-Translation Facility 3

The extended-translation facility 3 may be available
on a model implementing z/Architecture. The facility
performs operations on Unicode and Unicode-trans-
formation-format (UTF) characters; it also includes a
right-to-left TRANSLATE AND TEST operation. The
facility provides the following instructions:

CONVERT UTF-16 TO UTF-32
CONVERT UTF-32 TO UTF-16
CONVERT UTF-32 TO UTF-8
CONVERT UTF-8 TO UTF-32
SEARCH STRING UNICODE
TRANSLATE AND TEST REVERSE

(May, 2004)

Extract-CPU-Time Facility

The extract-CPU-time facility may be available on a
model implementing z/Architecture. The facility adds
the general instruction EXTRACT CPU TIME. This
instruction provides an efficient means by which a
problem-state program can determine the amount of
CPU time consumed, without requiring a supervisor-
state service routine. (April, 2007)

Floating-Point-Support-Sign-
Handling Facility

The floating-point-support-sign-handling facility
includes four instructions: COPY SIGN, LOAD COM-
PLEMENT, LOAD NEGATIVE, and LOAD POSITIVE.
These instructions operate on a 64-bit (long) floating-
point datum independent of the radix and do not set
the condition code. (April, 2007)

FPR-GR-Transfer Facility

The FPR-GR-transfer facility includes two instruc-
tions: LOAD FPR FROM GR and LOAD GR FROM
FPR. These instructions provide the means to move
a 64-bit (long) floating-point datum between a float-
ing-point register and a general register. (April, 2007)

General-Instructions-Extension
Facility

The general-instructions-extension facility may be
available on a model implementing z/Architecture.
The facility provides the following new instructions:

» ADD LOGICAL WITH SIGNED IMMEDIATE

» COMPARE AND BRANCH

» COMPARE AND BRANCH RELATIVE

+ COMPARE AND TRAP

» COMPARE HALFWORD RELATIVE LONG

» COMPARE IMMEDIATE AND BRANCH

« COMPARE IMMEDIATE AND BRANCH
RELATIVE

+ COMPARE IMMEDIATE AND TRAP

» COMPARE LOGICAL AND BRANCH

» COMPARE LOGICAL AND BRANCH RELATIVE

» COMPARE LOGICAL AND TRAP

+ COMPARE LOGICAL IMMEDIATE AND
BRANCH
+ COMPARE LOGICAL IMMEDIATE AND

BRANCH RELATIVE

» COMPARE LOGICAL IMMEDIATE AND TRAP

» COMPARE LOGICAL RELATIVE LONG

» COMPARE RELATIVE LONG

» EXTRACT CACHE ATTRIBUTE

» LOAD HALFWORD RELATIVE LONG

* LOAD LOGICAL HALFWORD RELATIVE LONG

* LOAD LOGICAL RELATIVE LONG

* LOAD RELATIVE LONG

* MULTIPLY SINGLE IMMEDIATE

» PREFETCH DATA

» PREFETCH DATA RELATIVE LONG

* ROTATE THEN AND SELECTED BITS

* ROTATE THEN EXCLUSIVE OR SELECTED
BITS

* ROTATE THEN INSERT SELECTED BITS

» ROTATE THEN OR SELECTED BITS

* STORE HALFWORD RELATIVE LONG

» STORE RELATIVE LONG

Additionally, the following instructions have been
enhanced to include additional formats:

« ADD IMMEDIATE

+ COMPARE HALFWORD

« COMPARE HALFWORD IMMEDIATE
+ COMPARE LOGICAL IMMEDIATE

» LOAD ADDRESS EXTENDED

« LOAD AND TEST

+ MOVE

* MULTIPLY

* MULTIPLY HALFWORD

(February, 2008)

HFP Multiply-and-Add/Subtract
Facility

The HFP-multiply-and-add/subtract facility provides
instructions for improved processing of hexadecimal
floating-point numbers. The MULTIPLY AND ADD (or
SUBTRACT) instruction is intended to be used in
place of MULTIPLY followed by ADD (or SUBTRACT)
NORMALIZED. (June, 2003)

HFP-Unnormalized-Extensions
Facility

The HFP-unnormalized-extension facility may be
available on a model implementing z/Architecture.
The facility provides instructions for improved pro-
cessing of unnormalized hexadecimal floating-point
numbers. It extends the capabilities of the HFP-multi-
ply-and-add/subtract facility, by providing the follow-
ing instructions that operate on unnormalized
operands:

MULTIPLY UNNORMALIZED
MULTIPLY AND ADD UNNORMALIZED

(September, 2005)

IEEE-Exception-Simulation Facility

The IEEE-exception-simulation facility includes the
instructions SET FPC AND SIGNAL and LOAD FPC
AND SIGNAL. These instructions provide a means
to simulate a data exception program interruption.
(April, 2007)

Chapter 1. Introduction 1-11

List-Directed Initial Program Load

The list-directed initial-program-load (IPL) function
may be available on a model. List-directed IPL, also
known as SCSI IPL in other System Library publica-
tions, provides the means by which a program can be
loaded from an I/O device other than a classical
channel-attached device (ESCON or FICON). Facili-
ties are also provided for loading a stand-alone dump
program using list-directed IPL. (May, 2004)

Long-Displacement Facility

The long-displacement facility provides a 20-bit
signed-displacement field in 69 previously existing
instructions (by using a previously unused byte in the
instructions) and 44 new instructions. A 20-bit signed
displacement allows relative addressing of up to
524,287 bytes beyond the location designated by a
base register or base-and-index-register pair and up
to 524,288 bytes before that location. The enhanced
previously existing instructions generally are ones
that handle 64-bit binary integers. The new instruc-
tions generally are new versions of instructions for
32-bit binary integers. The new instructions also
include (1)a LOAD BYTE instruction that sign-
extends a byte from storage to form a 32-bit or 64-bit
result in a general register and (2) new floating-point
LOAD and STORE instructions. The long-displace-
ment facility provides register-constraint relief by
reducing the need for base registers, code size
reduction by allowing fewer instructions to be used,
and additional improved performance through
removal of possible address-generation interlocks.
(June, 2003)

Message-Security Assist

The message-security assist (MSA) may be available
on a model implementing z/Architecture. The MSA
basic facility includes the following instructions:

CIPHER MESSAGE
CIPHER MESSAGE WITH CHAINING

COMPUTE INTERMEDIATE MESSAGE
DIGEST

COMPUTE LAST MESSAGE DIGEST
COMPUTE MESSAGE AUTHENTICATION
CODE

Also included are five query functions and two func-
tions for generating a message digest based on the
secure-hash algorithm (SHA-1). The five query func-
tions, one for each instruction, are used to determine
the additional installed MSA facilities, which may
include the following.

MSA Data-Encryption-Algorithm (DEA) Facility:
The MSA DEA facility consists of nine functions for
ciphering messages, with or without chaining, and for
generating a message-authentication code (MAC)
using a 56-bit, 112-bit, or 168-bit cryptographic key.1
All of these functions are based on the DEA algo-
rithm. (June, 2003)

Message-Security-Assist
Extension 1

The message-security-assist extension 1 may be
available on models implementing the message-
security assist. The extension provides the following
functions:

MSA SHA-256 Facility: This facility consists of two
functions, one for generating an intermediate mes-
sage digest and another for generating a final mes-
sage digest.

MSA Advanced-Encryption-Standard (AES-128)
Facility: This facility consists of two functions for
ciphering messages, with or without chaining, using
the AES-128 algorithm.

MSA Pseudo-Random-Number Generation
(PRNG) Facility: This facility consists of a function
for generating a multiple of 64-bit pseudo-random
numbers using the ANSI® X9.17 pseudo-random-
number algorithm.

(September, 2005)

Message-Security-Assist
Extension 2

The message-security-assist extension 2 may be
available on models implementing the message-
security assist. The extension provides the following
functions:

1. These key lengths reflect the cryptographic strength. In subsequent chapters, they are referred to as 64-bit, 128-bit, or 192-bit,

respectively, to include the DEA-key-parity bits.

1-12

z/Architecture Principles of Operation

MSA AES-192 Facility: This facility consists of two
functions for ciphering a message, with or without
chaining, using the AES-192 algorithm.

MSA AES-256 Facility: This facility consists of two
functions for ciphering a message, with or without
chaining, using the AES-256 algorithm.

MSA SHA-512 Facility: This facility consists of two
functions, one for generating an intermediate mes-
sage digest and another for generating a final mes-
sage digest, using the SHA-512 algorithm.

(February, 2008)

Modified CCW Indirect Data
Addressing Facility

The modified-CCW-indirect-data-addressing (MIDA)
facility may be available on models implementing
z/Architecture and provides the program an alternate
means to transfer large amounts of data that spans
noncontiguous blocks in main storage without the
overhead of data chaining and without the strict
boundary and count restrictions imposed by CCW
indirect data addressing (IDA). Modified CCW indi-
rect data addressing permits a single channel-com-
mand word to control the transfer of up to 65,535
bytes of data that spans noncontiguous blocks in
main storage. Each block of main storage to be trans-
ferred may be specified on any boundary and length
up to 4K bytes, provided the specified block does not
cross a 4K-byte boundary.

Use of modified CCW indirect data addressing may
be restricted to devices accessible by certain chan-
nel-path types.

When modified CCW indirect data addressing is
used, the CCW data address is not used to directly
address data. Instead, the address points to a contig-
uous list of up to 256 quadwords called the modified-
indirect-data-address list (MIDAL). Each quadword in
the MIDAL is called a modified-indirect-data-address
word (MIDAW) that describes a block of storage to be
transferred and contains flags, a byte count, and a
64-bit address designating a data area in absolute
storage. When modified CCW indirect data address-
ing is used, transfer of control from one MIDAW to
the next is made when the count of bytes specified by
the MIDAW count field has been transferred and the
total count of bytes transferred does not yet equal the

count specified by the CCW. This is dissimilar to indi-
rect data addressing where the transfer of control
from one IDAW to the next is made when a program-
specified 2K or 4K boundary is reached and the total
count of bytes transferred does not yet equal the
count specified in the CCW.

In addition to the MIDAW, the ORB modified-CCW-
indirect-data-addressing-control bit and the CCW
modified-indirect-data-address flag are added. (Sep-
tember, 2005)

Move-With-Optional-Specifications
Facility

The move-with-optional-specifications facility may be
available on a model implementing z/Architecture.
The facility adds the semiprivileged MOVE WITH
OPTIONAL SPECIFICATIONS instruction. This
instruction provides the means of moving from a
source operand to a destination operand using differ-
ent address-space-control modes and different keys
for each operand. (February, 2008)

Multiple-Subchannel-Set Facility

The multiple-subchannel-set (MSS) facility may be
available on a model implementing z/Architecture
and increases the maximum number of subchannels
that can be configured to a program. When the MSS
facility is not installed, a single set of subchannels, in
the range 0-65,535, may be provided. When the MSS
facility is installed, a maximum of four sets of sub-
channels may be provided for a program. Each sub-
channel set provides from one to 64K subchannels in
the range 0 t0-65,535. (February, 2008)

Parsing-Enhancement Facility

The parsing-enhancement facility may be available
on a model implementing z/Architecture. The facility
adds the following instructions:

TRANSLATE AND TEST EXTENDED
TRANSLATE AND TEST
EXTENDED

REVERSE

These instructions perform functions similar to those
of the TRANSLATE AND TEST and TRANSLATE
AND TEST REVERSE instructions, respectively, but
provide the capability of processing either single-byte

Chapter 1. Introduction 1-13

or double-byte argument characters, returning either
8-bit or 16-bit function codes. (February, 2008)

PER-3 Facility:

The PER-3 facility may be available on a model
implementing z/Architecture. When the facility is
installed, the following two functions are available for
use by the program:

Breaking-Event Address Register: The breaking-
event-address register is a 64-bit CPU register that is
updated with the address of any instruction that
causes a break in sequential instruction execution
(that is, the instruction address in the PSW is
replaced, rather than incremented by the length of
the instruction). When the PER-3 facility is installed
and a program interruption occurs, whether or not
PER is indicated, the contents of the breaking-event-
address register are stored in real storage locations
272-279. This can be used as a debugging assist for
wild-branch detection.

PER Instruction-Fetching Nullification: Bit 39 of
control register 9, when one, specifies that PER
instruction-fetching events force nullification. Bit 39 of
control register 9 is meaningful only when bit 33 of
control register 9, the instruction-fetching PER-event
mask, is also one. When the PER-3 facility is not
installed, or when bit 39 of control register 9 is zero,
nullification is not forced for PER instruction-fetching
events (called a PER instruction-fetching basic
event).

(September, 2005)

PFPO Facility

The PFPO facility provides the instruction PER-
FORM FLOATING-POINT OPERATION. This
instruction, designed for future expansion, currently
provides 54 conversion functions (from any of nine
floating-point data formats to any of the six formats in
another floating-point radix) using any of eight round-
ing methods. All conversions are correctly rounded.
(April, 2007)

Restore-Subchannel Facility

The restore-subchannel facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means for the channel subsystem to

1-14

z/Architecture Principles of Operation

recover a damaged subchannel and report the recov-
ery to the program by means of a CRW. (February,
2008)

Server-Time-Protocol Facility:

The server-time-protocol facility may be available on
a model implementing z/Architecture. The facility pro-
vides the means by which the time-of-day (TOD)
clocks in various systems can be synchronized using
message links. STP operates in conjunction with the
TOD-clock-steering facility, providing a new timing
mode, new timing states, a new STP-timing-alert
external interruption, and a new STP-sync-check
machine-check conditions. (September, 2005)

Store-Clock-Fast Facility

The store-clock-fast facility may be available on a
model implementing z/Architecture. The facility pro-
vides a means by which an eight-byte time-of-day
clock value may be stored without any artificial delay
to ensure uniqueness. When the facility is installed,
the TOD-clock bits stored by TRACE (TRACE and
TRACG) are subject to additional control by a bit in
control register 0. The facility provides the STORE
CLOCK FAST instruction. (September, 2005)

Store-Facility-List-Extended
Facility:

The store-facility-list-extended facility may be avail-
able on a model implementing z/Architecture. The
facility extends the function provided by the STORE
FACILITY LIST (STFL) instruction. Whereas STFL is
a control instruction that can store an indication of 32
facilities at real location 200, the new STORE FACIL-
ITY LIST EXTENDED (STFLE) instruction is a gen-
eral instruction that can store an indication of up to
16,384 facilities at a program-specified location.
(September, 2005)

TOD-Clock-Steering Facility

The TOD-clock-steering facility may be available on a
model implementing z/Architecture. The facility pro-
vides a means by which apparent stepping rate of the
time-of-day clock may be altered without changing
the physical hardware oscillator which steps the
physical clock. The facility adds the semiprivileged
PERFORM TIMING FACILITY FUNCTION (PTFF)

instruction which provides the means by which the
program can query various timing-related parame-
ters, and, optionally, the means by which an autho-
rized timing-control program can influence certain of
these parameters. (September, 2005)

The ESA/390 Base

z/Architecture includes all of the facilities of ESA/390
except for the asynchronous-pageout, asynchro-
nous-data-mover, program-call-fast, and vector facili-
ties. This section briefly outlines most of the
remaining facilities that were additions in ESA/390 as
compared to ESA/370.

ESA/390 is described in Enterprise Systems Archi-
tecture/390 Principles of Operation, SA22-7201.

The CPU-related facilities that were new in ESA/390
are summarized below. ESA/390 was announced in
September, 1990. Any extension added subse-
quently has the date of its announcement in paren-
theses at the end of its summary.

The following extensions are described in detail in
SA22-7201 and in this publication:

* Access-list-controlled protection allows store-
type storage references to an address space to
be prohibited by means of a bit in the access-list
entry used to access the space. Thus, different
users having different access lists can have dif-
ferent capabilities to store in the same address
space.

* The program-event-recording facility 2 (PER 2) is
an alternative to the original PER facility, which is
now named PER 1. (Neither of the names PER 1
and PER 2 is used in z/Architecture; only “PER”
is used.) PER 2 provides the option of having a
successful-branching event occur only when the
branch target is within the designated storage
area, and it provides the option of having a stor-
age-alteration event occur only when the storage
area is within designated address spaces. The
use of these options improves performance by
allowing only PER events of interest to occur.
PER 2 deletes the ability to monitor for general-
register-alteration events.

PER 2 includes extensions that provide addi-
tional information about PER events. The exten-

sions were described in detail beginning in the
fourth edition of SA22-7201.

Concurrent sense improves performance by
allowing sense information to be presented at the
time of an interruption due to a unit-check condi-
tion, thus avoiding the need for a separate 1/O
operation to obtain the sense information.

Broadcasted purging provides the COMPARE
AND SWAP AND PURGE instruction for condi-
tionally updating tables associated with dynamic
address translation and access-register transla-
tion and clearing associated buffers in multiple
CPUs. This is described in detail beginning in the
eighth edition of SA22-7201.

Storage-protection override provides a new form
of subsystem storage protection that improves
the reliability of a subsystem executed in an
address space along with possibly erroneous
application programs. When storage-protection
override is made active by a control-register bit,
fetches and stores by the CPU are permitted to
storage locations having a storage key of 9
regardless of the access key used by the CPU. If
the subsystem is in key-8 storage and is exe-
cuted with a PSW key of 8, for example, and the
application programs are in key-9 storage and
are executed with a PSW key of 9, accesses by
the subsystem to the application-program areas
are permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by allowing
improved performance when an operand is
invalid in both main and expanded storage. The
ESA/370 version of MOVE PAGE is now called
move-page facility 1 and is in Chapter 7, “Gen-
eral Instructions” MOVE PAGE of move-page
facility 2 is in Chapter 10, “Control Instructions.”
Some details about the means for control-pro-
gram support of MOVE PAGE are not provided.
(September, 1991) (The z/Architecture MOVE
PAGE instruction is described only in Chapter 10
of this publication. MOVE PAGE no longer can
move data to or from expanded storage, and all
details about MOVE PAGE are provided.)

Chapter 1. Introduction 1-15

The square-root facility consists of the SQUARE
ROOT instruction and the square-root exception.
The instruction extracts the square root of a float-
ing-point operand in either the long or short for-
mat. The instruction is the same as that provided
on some models of the IBM 4341, 4361, and
4381 Processors. (September, 1991)

The cancel-I/O facility allows the program to with-
draw a pending start function from a designated
subchannel without signaling the device, which is
useful in certain error-recovery situations. (Sep-
tember, 1991)

The cancel-I/O facility provides the CANCEL
SUBCHANNEL instruction and is described in
detail beginning in the eighth edition of
SA22-7201.

The string-instruction facility (or logical string
assist) provides instructions for (1) moving a
string of bytes until a specified ending byte is
found, (2) logically comparing two strings until an
inequality or a specified ending byte is found,
and (3) searching a string of a specified length
for a specified byte. The first two instructions are
particularly useful in a C program in which strings
are normally delimited by an ending byte of all
zeros. (June, 1992)

The suppression-on-protection facility causes a
protection exception due to page protection to
result in suppression of instruction execution
instead of termination of instruction execution,
and it causes the address and an address-space
identifier of the protected page to be stored in
low storage. This is useful in performing the
AIX/ESA® copy-on-write function, in which
AIX/ESA causes the same page of different
address spaces to map to a single page frame of
real storage so long as a store in the page is not
attempted and then, when a store is attempted in
a particular address space, assigns a unique
page frame to the page in that address space
and copies the contents of the page to the new
page frame. (February, 1993)

The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE CONTROL
FAST (SACF) instruction, which possibly can be
used instead of the previously existing SET
ADDRESS SPACE CONTROL (SAC) instruction,
depending on whether all of the SAC functions
are required. SACF, unlike SAC, does not per-
form the serialization and checkpoint-synchroni-

1-16 z/Architecture Principles of Operation

zation functions, nor does it cause copies of
prefetched instructions to be discarded. SACF
provides improved performance on some mod-
els. (February, 1993)

The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control from
one address space to another in a group of
address spaces called a subspace group, with
this giving and returning of control being done
with better performance than can be obtained by
means of the PROGRAM CALL and PROGRAM
RETURN or PROGRAM TRANSFER instruc-
tions. One address space in the subspace group
is called the base space, and the other address
spaces in the group are called subspaces. It is
intended that each subspace contain a different
subset of the storage in the base space, that the
base space and each subspace contain a sub-
system control program, such as CICS®, and
application programs, and that each subspace
contain the data for a single transaction being
processed under the subsystem control program.
The placement of the data for each transaction in
a different subspace prevents the processing of a
transaction from erroneously damaging the data
of other transactions. The data of the control pro-
gram can be protected from the transaction pro-
cessing by means of the storage-protection-
override facility. (April, 1994)

The virtual-address enhancement of suppression
on protection provides that if dynamic address
translation (DAT) was on when a protection
exception was recognized, the suppression-on-
protection result is indicated, and the address of
the protected location is stored, only if the
address is one that was to be translated by DAT,;
the suppression-on-protection result is not indi-
cated if the address that would be stored is a real
address. This enhancement allows the stored
address to be translated reliably by the control
program to determine if the exception was due to
page protection as opposed to key-controlled
protection. The enhancement extends the useful-
ness of suppression on protection to operating
systems like MVS/ESA™ that use key-controlled
protection. (September, 1994)

The immediate-and-relative-instruction facility
includes 13 new instructions, most of which use
a halfword-immediate value for either signed-
binary arithmetic operations or relative branch-
ing. The facility reduces the need for general reg-

isters, and, in particular, it eliminates the need to
use general registers to address branch targets.
As a result, the general registers and access reg-
isters can be allocated more efficiently in pro-
grams that require many registers. (September,
1996)

The compare-and-move-extended facility pro-
vides new versions of the COMPARE LOGICAL
LONG and MOVE LONG instructions. The new
versions increase the size of the operand-length
specifications from 24 bits to 32 bits, which can
be useful when objects larger than 16M bytes are
processed through the use of 31-bit addressing.
The new versions also periodically complete to
allow software polling in a multiprocessing sys-
tem. (September, 1996)

The checksum facility consists of the CHECK-
SUM instruction, which can be used to compute
a 16-bit or 32-bit checksum in order to improve
TCP/IP (transmission-control protocol/internet
protocol) performance. (September, 1996)

The called-space-identification facility improves
serviceability by further identifying the called
address space in a linkage-stack state entry
formed by the PROGRAM CALL instruction.
(September, 1996)

The branch-and-set-authority facility consists of
the BRANCH AND SET AUTHORITY instruction,
which can be used to improve the performance
of linkages within an address space by replacing
PROGRAM CALL, PROGRAM TRANSFER, and
SET PSW KEY FROM ADDRESS instructions.
(June, 1997)

The perform-locked-operation facility consists of
the unprivileged PERFORM LOCKED OPERA-
TION instruction, which appears to provide con-
current interlocked-update references to multiple
storage operands. A function code of the instruc-
tion can specify any of six operations: compare
and load, compare and swap, double compare
and swap, compare and swap and store, com-
pare and swap and double store, and compare
and swap and triple store. The function code fur-
ther specifies either word or doubleword oper-
ands. The instruction can be used to avoid the
use of programmed locks in a multiprocessing
system. (June, 1997)

Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability

of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

— Basic floating-point extensions, which pro-
vides 12 additional floating-point registers to
make a total of 16 floating-point registers.
This facility also includes a floating-point-
control register and means for saving the
contents of the new registers during a store-
status operation or a machine-check inter-
ruption.

— Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

— Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions to
operate on data in the HFP format. All of
these are counterparts to new instructions
provided by the BFP facility, including con-
version between floating-point and fixed-
point formats, and a more complete set of
operations on the extended format.

— Binary floating-point (BFP), which defines
short, long, and extended binary-floating-
point (BFP) data formats and provides 87
new instructions to operate on data in these
formats. The BFP formats and operations
provide everything necessary to conform to
the IEEE standard (ANSI/IEEE Standard
754-1985, |IEEE Standard for Binary Float-
ing-Point Arithmetic, dated August 12, 1985)
except for conversion between binary-float-
ing-point numbers and decimal strings,
which must be provided in software.

(May, 1998)

The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the instruc-
tion address and certain other fields in the cur-
rent PSW and also the contents of an access-
and-general-register pair. RESUME PROGRAM
allows a problem-state interruption-handling pro-
gram to restore the state of an interrupted pro-
gram and return to that program despite that a
register is required for addressing the save area
from which the state is restored. (May, 1998)

The trap facility provides the TRAP instructions
(a two-byte TRAPZ2 instruction and a four-byte
TRAP4 instruction) that can overlay instructions

Chapter 1. Introduction 1-17

1-18

in an application program to give control to a pro-
gram that can perform fix-up operations on data
being processed, such as dates that may be a
“Year-2000” problem. RESUME PROGRAM can
be used to return from the fix-up program. TRAP
and RESUME PROGRAM can improve perfor-
mance by avoiding program interruptions that
would otherwise be needed to give control to and
from the fix-up program. (May, 1998)

The extended-TOD-clock facility includes (1) an
extension of the TOD clock from 64 bits to 104
bits, allowing greater resolution; (2) a TOD pro-
grammable register, which contains a TOD pro-
grammabile field that can be used to identify the
configuration providing a TOD-clock value in a
sysplex; (3) the SET CLOCK PROGRAMMABLE
FIELD instruction, for setting the TOD program-
mable field in the TOD programmable register;
and (4) the STORE CLOCK EXTENDED instruc-
tion, which stores both the longer TOD-clock
value and the TOD programmable field. STORE
CLOCK EXTENDED can be used in the future
when the TOD clock is further extended to con-
tain time values that exceed the current year-
2042 limit (when there is a carry out of the cur-
rent bit 0 of the TOD clock). (August, 1998)

The TOD-clock-control-override facility provides
a control-register bit that allows setting the TOD
clock under program control, without use of the
manual TOD-clock control of any CPU. (August,
1998)

The store-system-information facility provides
the privileged STORE SYSTEM INFORMATION
instruction, which can be used to obtain informa-
tion about a component or components of a vir-
tual machine, a logical partition, or the basic
machine. (January, 1999)

The extended-translation facility, now called the
extended-translation facility 1, includes the CON-
VERT UNICODE TO UTF-8, CONVERT UTF-8
TO UNICODE, and TRANSLATE EXTENDED
instructions, all of which can improve perfor-
mance. TRANSLATE EXTENDED can be used
in place of a TRANSLATE AND TEST instruction
that locates an escape character, followed by a
TRANSLATE instruction that translates the bytes
preceding the escape character. (April, 1999)

The following extensions are described in detail in
other publications:

z/Architecture Principles of Operation

The Enterprise Systems Connection Architec-
ture® (ESCONP) introduces a new type of chan-
nel that uses an optical-fiber communication link
between channels and control units. Information
is transferred serially by bit, at 200 million bits per
second, up to a maximum distance of 60 kilome-
ters. The optical-fiber technology and serial
transmission simplify cabling and improve reli-
ability. See the publication IBM Enterprise Sys-
tems Architecture/390 ESCON I/O Interface,
SA22-7202.

The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of func-
tion for serial channel paths as is available for the
parallel-I/O-interface channel paths. See the
publication IBM Enterprise Systems Architec-
ture/390 ESCON Channel-to-Channel Adapter,
SA22-7203.

I/O-device self-description allows a device to
describe itself and its position in the 1/0 configu-
ration. See the publication /IBM Enterprise Sys-
tems Architecture/390 Common I/O-Device
Commands and Self Description, SA22-7204.

The compression facility performs a Ziv-Lempel
type of compression and expansion by means of
static (nonadaptive) dictionaries that are to be
prepared by a program before the compression
and expansion operations. Because the dictio-
naries are static, the compression facility can
provide good compression not only for long
sequential data streams (for example, archival or
network data) but also for randomly accessed
short records (for example, 80 bytes). See the
publication /IBM Enterprise Systems Architec-
ture/390 Data Compression, SA22-7208. (Febru-
ary, 1993) (The z/Architecture COMPRESSION
CALL instruction is described in this publication.
However, introductory information and informa-
tion about dictionary formats still is provided only
in SA22-7208.)

The remaining extensions of ESA/390, for which
detailed descriptions are not provided, are as follows:

The integrated cryptographic facility provides a
number of instructions to protect data privacy, to
support message authentication and personal
identification, and to facilitate key management.
The high-performance cipher capability of the
facility is designed for financial-transaction and
bulk-encryption environments, and it complies
with the Data Encryption Standard (DES).

— Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under VM/ESA®,
which in turn may be executed either under
another VM/ESA or in a logical partition.
(September, 1991)

The external-time-reference facility provides a
means to initiate and maintain the synchroniza-
tion of TOD clocks to an external time reference
(ETR). Synchronization tolerance of a few micro-
seconds can be achieved, and the effect of leap
seconds is taken into account. The facility con-
sists of an ETR sending unit (Sysplex Timer®),
which may be duplexed, two or more ETR receiv-
ing units, and optical-fiber cables. The cables are
used to connect the ETR sending unit, which is
an external device, to ETR receiving units of the
configuration. CPU instructions are provided for
setting the TOD clock to the value supplied by
the ETR sending unit.

— The ETR automatic-propagation-delay-
adjustment function adjusts the time signals
from the ETR to the attached processors to
compensate for the propagation delay on the
cables to the processors, thus allowing the
cables to be of different lengths. (September,
1991)

— The ETR external-time-source function syn-
chronizes the ETR to a time signal received
from a remote location by means of a tele-
phone or radio. (September, 1991)

Extended sorting provides instructions that
improve the performance of the DB2°® sorting
function.

Other PER extensions, besides those described
beginning in the fourth edition of this publication,
are an augmentation of PER 2 that provide addi-
tional PER function in the interpretive-execution
mode.

Channel-subsystem call provides various func-
tions for use in the management of the I/O con-
figuration. Some of the functions acquire
information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

The operational extensions are a number of
other improvements that result in increased avail-
ability and ease of use of the system, as follows:

— Automatic-reconfiguration permits an operat-
ing system in an LPAR partition to declare
itself willing to be terminated suddenly, usu-
ally to permit its storage and CPU resources
to be acquired by an adjacent partition that is
dynamically absorbing the work load of
another system that has failed. Other func-
tions deactivate and reset designated partici-
pating partitions.

— A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service pro-
Cessor.

— SCP-initiated reset allows a system control
program (SCP) to reset its /0O configuration
prior to entering the disabled wait state fol-
lowing certain check conditions.

— Console integration simplifies configuration
requirements by reducing by one the number
of consoles required by MVS.

— The processor-availability facility enables a
CPU experiencing an unrecoverable error
that will cause a check stop to save its state
and alert the other CPUs in the configura-
tion. This allows, in many cases, another
CPU to continue execution of the program
that was in execution on the failing CPU. The
facility is applicable in both the ESA/390
mode and the LPAR mode. (April, 1991)

Extensions for virtual machines are a number of
improvements to the interpretive-execution facil-
ity, as follows:

— The VM-data-space facility provides for mak-
ing the ESA/390 access-register architecture
more useful in virtual-machine applications.
The facility improves the ability to address a
larger amount of data and to share data. For
information on how VM/ESA uses the VM-
data-space facility, see the publication
VM/ESA CP Programming Services,
SC24-5520.

— A new storage-key function improves perfor-
mance by removing the need for the previ-
ously used RCP area.

— Other improvements include an optional spe-
cial-purpose lookaside for some of the guest-

Chapter 1. Introduction 1-19

state information and greater freedom in cer-
tain implementation choices.

The ESCON-multiple-image facility —(EMIF)
allows multiple logical partitions to share ESCON
channels (and FICON channels) and optionally
to share any of the control units and associated
I/O devices configured to these shared channels.
This can reduce channel requirements, improve
channel utilization, and improve 1/O connectivity.
(June, 1992)

PR/SM LPAR mode is enhanced to allow up to
10 logical partitions in a single-image configura-
tion and 20 in a physically-partitioned configura-
tion. The previous limits were seven and 14,
respectively. (June, 1992)

Coincident with z/Architecture, PR/SM LPAR
mode allows 15 logical partitions, and physical
partitioning is not supported.

The coupling facility enables high-performance
data sharing among MVS/ESA systems that are
connected by means of the facility. The coupling
facility provides storage that can be dynamically
partitioned for caching data in shared buffers,
maintaining work queues and status information
in shared lists, and locking data by means of
shared lock controls. MVS/ESA services provide
access to and manipulation of the coupling-facil-
ity contents. (April, 1994)

The ESA/370 and 370-XA Base

ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA as
compared to System/370 and that were additions in
ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in 370-XA
are as follows:

1-20

Bimodal addressing provides two modes of oper-
ation: a 24-bit addressing mode for the execution
of old programs and a 31-bit addressing mode.

31-bit logical addressing extends the virtual
address space from the 16M bytes addressable
with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

31-bit real and absolute addressing provides
addressability for up to 2G bytes of main storage.

z/Architecture Principles of Operation

The 370-XA protection facilities include key-con-
trolled protection on only 4K-byte blocks, page
protection, and, as in System/370, low-address
protection for addresses below 512. Fetch-pro-
tection override eliminates fetch protection for
locations 0-2047.

The tracing facility assists in the determination of
system problems by providing an ongoing record
in storage of significant events.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions facilitate sorting
applications.

The interpretive-execution facility allows creation
of virtual machines that may operate according
to several architectures and whose performance
is enhanced because many virtual-machine
functions are directly interpreted by the machine
rather than simulated by the program. This facil-
ity is described in the publication IBM 370-XA
Interpretive Execution, SA22-7095.

The service-call-logical-processor (SCLP) facil-
ity provides a means of communicating between
the control program and the service processor
for the purpose of describing and changing the
configuration. This facility is not described.

The 1/O-related differences between 370-XA and
System/370 result from the 370-XA channel sub-
system, which includes:

Path-independent addressing of 1/O devices,
which permits the initiation of /0 operations with-
out regard to which CPU is executing the I/O
instruction or how the I/O device is attached to
the channel subsystem. Any I/O interruption can
be handled by any CPU enabled for it.

Path management, whereby the channel sub-
system determines which paths are available for
selection, chooses a path, and manages any
busy conditions encountered while attempting to
initiate I/O processing with the associated
devices.

Dynamic reconnection, which permits any I/O
device using this capability to reconnect to any
available channel path to which it has access in
order to continue execution of a chain of com-
mands.

Programmable interruption subclasses, which
permit the programmed assignment of 1/O-inter-

ruption requests from individual 1/0O devices to
any one of eight maskable interruption queues.

An additional CCW format for the direct use of
31-bit addresses in channel programs. The new
CCW format, called format 1, is provided in addi-
tion to the System/370 CCW format, now called
format 0.

Address-limit checking, which provides an addi-
tional storage-protection facility to prevent data
access to storage locations above or below a
specified absolute address.

Monitoring facilities, which can be invoked by the
program to cause the channel subsystem to
measure and accumulate key [/O-resource
usage parameters.

Status-verification facility, which reports inappro-
priate combinations of device-status bits pre-
sented by a device.

A set of 13 I/O instructions, with associated con-
trol blocks, which are provided for the control of
the channel subsystem.

The facilities that were new in ESA/370 are as fol-
lows:

Sixteen access registers permit the program to
have immediate access to storage operands in
up to 16 2G-byte address spaces, including the
address space in which the program resides. In a
dynamic-address-translation mode named
access-register mode, the instruction B field, or
for certain instructions the R field, designates
both a general register and an access register,
and the contents of the access register, along
with the contents of protected tables, specify the
operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authoriza-
tion mechanism, can have fast access to hun-
dreds of different operand address spaces.

A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or different
address spaces. This mechanism makes use
also of the previously existing PROGRAM CALL
instruction, an extended entry-table entry, and a
new PROGRAM RETURN instruction. The
mechanism saves various elements of status,
including access-register and general-register
contents, during a calling linkage, provides for

changing the current status during the calling
linkage, and restores the original status during
the returning linkage. The linkage stack can also
be used to save and restore access-register and
general-register contents during a branch-type
linkage performed by the new instruction
BRANCH AND STACK.

A translation mode named home-space mode
provides an efficient means for the control pro-
gram to obtain control in the address space,
called the home address space, in which the
principal control blocks for a dispatchable unit (a
task or process) are kept.

The semiprivileged MOVE WITH SOURCE KEY
and MOVE WITH DESTINATION KEY instruc-
tions allow bidirectional movement of data
between storage areas having different storage
keys, without the need to change the PSW key.

The privileged LOAD USING REAL ADDRESS
and STORE USING REAL ADDRESS instruc-
tions allow the control program to access data in
real storage more efficiently.

The private-space facility allows an address
space not to contain any common segments and
causes low-address protection and fetch-protec-
tion override not to apply to the address space.

The unprivileged MOVE PAGE instruction allows
the program to move a page of data between
main and expanded storage, provided that the
source and destination pages are both valid.
Some details about the means for control-pro-
gram support of MOVE PAGE are not provided.
The ESA/370 version of MOVE PAGE is now
called move-page facility 1.

The Processor Resource/Systems Manager™
(PR/SM™) feature provides support for multiple
preferred guests under VM/XA and provides the
logically partitioned (LPAR) mode, with the latter
providing flexible partitioning of processor
resources among multiple logical partitions. Cer-
tain aspects of the LPAR use of PR/SM are
described in the publication IBM ES/3090 Pro-
cessor Complex Processor Resource/Systems
Manager Planning Guide, GA22-7123.

The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of the
compression of IMS log data sets and can be
useful in other programs also.

Chapter 1. Introduction 1-21

System Program

z/Architecture is designed to be used with a control
program that coordinates the use of system
resources and executes all I/O instructions, handles
exceptional conditions, and supervises scheduling
and execution of multiple programs.

Compatibility

Compatibility among
z/Architecture Systems

Although systems operating as defined by z/Architec-
ture may differ in implementation and physical capa-
bilities, logically they are upward and downward
compatible. Compatibility provides for simplicity in
education, availability of system backup, and ease in
system growth. Specifically, any program written for
z/Architecture gives identical results on any z/Archi-
tecture implementation, provided that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional facil-
ities) being present when the facilities are not
included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the con-
figuration. For example, the program must not
depend on interruptions caused by the use of
operation codes or command codes that are not
installed in some models. Also, it must not use or
depend on fields associated with uninstalled
facilities. For example, data should not be placed
in an area used by another model for fixed-logout
information. Similarly, the program must not use
or depend on unassigned fields in machine for-
mats (control registers, instruction formats, etc.)
that are not explicitly made available for program
use.

4. Does not depend on results or functions that are
defined to be unpredictable or model-dependent
or are identified as undefined. This includes the
requirement that the program should not depend
on the assignment of device numbers and CPU
addresses.

1-22

z/Architecture Principles of Operation

5. Does not depend on results or functions that are
defined in the functional-characteristics publica-
tion for a particular model to be deviations from
the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting com-
patibility.

Compatibility between
z/Architecture and ESA/390

Control-Program Compatibility

Control programs written for ESA/390 cannot be
directly transferred to systems operating as defined
by z/Architecture. This is because the general-regis-
ter and control-register sizes, PSW size, assigned
storage locations, and dynamic address translation
are changed.

Problem-State Compatibility

A high degree of compatibility exists at the problem-
state level in going forward from ESA/390 to z/Archi-
tecture. Because the majority of a user’s applications
are written for the problem state, this problem-state
compatibility is useful in many installations.

A problem-state program written for ESA/390 oper-
ates with z/Architecture, provided that the program:

1. Complies with the limitations described in “Com-
patibility among z/Architecture Systems”.

2. Is not dependent on privileged facilities which are
unavailable on the system.

Programming Note: This publication assigns mean-
ings to various operation codes, to bit positions in
instructions, channel-command words, registers, and
table entries, and to fixed locations in the low 512
bytes and bytes 4096-8191 of storage. Unless specif-
ically noted, the remaining operation codes, bit posi-
tions, and low-storage locations are reserved for
future assignment to new facilities and other exten-
sions of the architecture.

To ensure that existing programs operate if and when
such new facilities are installed, programs should not
depend on an indication of an exception as a result of
invalid values that are currently defined as being
checked. If a value must be placed in unassigned
positions that are not checked, the program should

enter zeros. When the machine provides a code or
field, the program should take into account that new
codes and bits may be assigned in the future. The
program should not use unassigned low-storage
locations for keeping information since these loca-
tions may be assigned in the future in such a way that
the machine causes the contents of the locations to
be changed.

Availability

Availability is the capability of a system to accept and
successfully process an individual job. Systems oper-
ating in accordance with z/Architecture permit sub-
stantial availability by (1) allowing a large number
and broad range of jobs to be processed concur-
rently, thus making the system readily accessible to
any particular job, and (2) limiting the effect of an
error and identifying more precisely its cause, with
the result that the number of jobs affected by errors is
minimized and the correction of the errors facilitated.

Several design aspects make this possible.

* A program is checked for the correctness of
instructions and data as the program is executed,
and program errors are indicated separate from
equipment errors. Such checking and reporting
assists in locating failures and isolating effects.

* The protection facilities, in conjunction with
dynamic address translation and the separation
of programs and data in different address
spaces, permit the protection of the contents of
storage from destruction or misuse caused by
erroneous or unauthorized storing or fetching by
a program. This provides increased security for
the user, thus permitting applications with differ-
ent security requirements to be processed con-
currently with other applications.

e Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it per-
mits the implementation of virtual machines,
which may be used in the design and testing of
new versions of operating systems along with the
concurrent processing of application programs.
Additionally, it provides for the concurrent opera-
tion of incompatible operating systems.

* The use of access registers allows programs,
data, and different collections of data to reside in

different address spaces, and this further
reduces the likelihood that a store using an incor-
rect address will produce either erroneous
results or a system-wide failure.

Multiprocessing and the channel subsystem per-
mit better use of storage and processing capabil-
ities, more direct communication between CPUs,
and duplication of resources, thus aiding in the
continuation of system operation in the event of
machine failures.

MONITOR CALL, program-event recording, and
the timing facilities permit the testing and debug-
ging of programs without manual intervention
and with little effect on the concurrent processing
of other programs.

On most models, error checking and correction
(ECC) in main storage, CPU retry, and command
retry provide for circumventing intermittent equip-
ment malfunctions, thus reducing the number of
equipment failures.

An enhanced machine-check-handling mecha-
nism provides model-independent fault isolation,
which reduces the number of programs impacted
by uncorrected errors. Additionally, it provides
model-independent recording of machine-status
information. This leads to greater machine-
check-handling compatibility between models
and improves the capability for loading and oper-
ating a program on a different model when a sys-
tem failure occurs.

A small number of manual controls are required
for basic system operation, permitting most oper-
ator-system interaction to take place via a unit
operating as an I/O device and thus reducing the
possibility of operator errors.

The logical partitions made available by the
PR/SM feature allow continued reliable produc-
tion operations in one or more partitions while
new programming systems are tested in other
partitions. This is an advancement in particular
for non-VM installations.

The operational extensions and channel-sub-
system-call facility of ESA/390 and z/Architecture
improve the ability to continue execution of appli-
cation programs in the presence of system inci-
dents and the ability to make configuration
changes with less disruption to operations.

Chapter 1. Introduction 1-23

1-24 z/Architecture Principles of Operation

Chapter 2. Organization

Main Storage. 2-2 Access Registers 2-5

Expanded Storage. 2-2 Cryptographic Facility 2-5

CPU. .. 2-2 External Time Reference 2-5
PSW. . 2-3 O 2-5
General Registers 2-3 Channel Subsystem 2-5
Floating-Point Registers 2-3 ChannelPaths 2-6
Floating-Point-Control Register. 2-3 I/O Devices and Control Units. 2-6
Control Registers. 2-5 Operator Facilities. 2-6

Logically, a system consists of main storage, one or

more central processing units (CPUs), operator facili- ETR

ties, a channel subsystem, and I/O devices. |/O

devices are attached to the channel subsystem

through control units. The connection between the

channel subsystem and a control unit is called a CPU | _

channel path. Expanded I Main

Storage Storage

A channel path employs either a parallel-transmis-

sion protocol or a serial-transmission protocol and, CPU |

accordingly, is called either a parallel or a serial Crypto

channel path. A serial channel path may connect to
a control unit through a dynamic switch that is capa-
ble of providing different internal connections
between the ports of the switch.

Expanded storage may also be available in the sys-
tem, a cryptographic unit may be included in a CPU,
and an external time reference (ETR) may be con-
nected to the system.

The physical identity of the above functions may vary
among implementations, called “models”. Figure 2-1
depicts the logical structure of a two-CPU multipro-
cessing system that includes expanded storage and
a cryptographic unit and that is connected to an ETR.

Specific processors may differ in their internal char-
acteristics, the installed facilities, the number of sub-
channels, channel paths, and control units which can
be attached to the channel subsystem, the size of
main and expanded storage, and the representation
of the operator facilities.

A system viewed without regard to its I/O devices is
referred to as a configuration. All of the physical
equipment, whether in the configuration or not, is
referred to as the installation.

© Copyright IBM Corp. 1990-2008

H

Channel Subsystem

Dynamic
Switch Switch

Figure 2-1. Logical Structure of a z/Architecture System
with Two CPUs

Model-dependent reconfiguration controls may be
provided to change the amount of main and
expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be used
to partition a single configuration into multiple config-
urations. Each of the configurations so reconfigured
has the same structure, that is, main and expanded
storage, one or more CPUs, and one or more sub-

2-1

channels and channel paths in the channel sub-
system.

Each configuration is isolated in that the main and
expanded storage in one configuration is not directly
addressable by the CPUs and the channel sub-
system of another configuration. It is, however, pos-
sible for one configuration to communicate with
another by means of shared I/O devices or a chan-
nel-to-channel adapter. At any one time, the storage,
CPUs, subchannels, and channel paths connected
together in a system are referred to as being in the
configuration. Each CPU, subchannel, channel path,
main-storage location, and expanded-storage loca-
tion can be in only one configuration at a time.

Main Storage

Main storage, which is directly addressable, provides
for high-speed processing of data by the CPUs and
the channel subsystem. Both data and programs
must be loaded into main storage from input devices
before they can be processed. The amount of main
storage available in the system depends on the
model, and, depending on the model, the amount in
the configuration may be under control of model-
dependent configuration controls. The storage is
available in multiples of 4K-byte blocks. At any
instant, the channel subsystem and all CPUs in the
configuration have access to the same blocks of stor-
age and refer to a particular block of main-storage
locations by using the same absolute address.

Main storage may include a faster-access buffer stor-
age, sometimes called a cache. Each CPU may
have an associated cache. The effects, except on
performance, of the physical construction and the
use of distinct storage media are not observable by
the program.

Expanded Storage

Expanded storage may be available on some mod-
els. Expanded storage, when available, can be
accessed by all CPUs in the configuration by means
of instructions that transfer 4K-byte blocks of data
from expanded storage to main storage or from main
storage to expanded storage. These instructions are
the PAGE IN and PAGE OUT instructions, described

2-2 z/Architecture Principles of Operation

in “PAGE IN” on page 10-62 and “PAGE OUT” on
page 10-63.

Each 4K-byte block of expanded storage is
addressed by means of a 32-bit unsigned binary inte-
ger called an expanded-storage block number.

CPU

The central processing unit (CPU) is the controlling
center of the system. It contains the sequencing and
processing facilities for instruction execution, inter-
ruption action, timing functions, initial program load-
ing, and other machine-related functions.

The physical implementation of the CPU may differ
among models, but the logical function remains the
same. The result of executing an instruction is the
same for each model, providing that the program
complies with the compatibility rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary,
decimal, and hexadecimal) of fixed length, decimal
integers of variable length, and logical information of
either fixed or variable length. Processing may be in
parallel or in series; the width of the processing ele-
ments, the multiplicity of the shifting paths, and the
degree of simultaneity in performing the different
types of arithmetic differ from one model of CPU to
another without affecting the logical results.

Instructions which the CPU executes fall into eight
classes: general, decimal, floating-point-support
(FPS), binary-floating-point (BFP), decimal-floating-
point (DFP), hexadecimal-floating-point (HFP), con-
trol, and 1/O instructions. The general instructions
are used in performing binary-integer-arithmetic
operations and logical, branching, and other nona-
rithmetic operations. The decimal instructions oper-
ate on data in the decimal format. The BFP, DFP, and
HFP instructions operate on data in the BFP, DFP,
and HFP formats, respectively, while the FPS instruc-
tions operate on floating-point data independent of
the format or convert from one format to another.
The privileged control instructions and the 1/O
instructions can be executed only when the CPU is in
the supervisor state; the semiprivileged control
instructions can be executed in the problem state,
subject to the appropriate authorization mechanisms.

The CPU provides registers which are available to
programs but do not have addressable representa-
tions in main storage. They include the current pro-
gram-status word (PSW), the general registers, the
floating-point registers and floating-point-control reg-
ister, the control registers, the access registers, the
prefix register, and the registers for the clock compar-
ator and the CPU timer. Each CPU in an installation
provides access to a time-of-day (TOD) clock, which
is shared by all CPUs in the installation. The instruc-
tion operation code determines which type of register
is to be used in an operation. See Figure 2-2 on
page 2-4 for the format of the control, access, gen-
eral, and floating-point registers.

PSW

The program-status word (PSW) includes the instruc-
tion address, condition code, and other information
used to control instruction sequencing and to deter-
mine the state of the CPU. The active or controlling
PSW is called the current PSW. It governs the pro-
gram currently being executed.

The CPU has an interruption capability, which per-
mits the CPU to switch rapidly to another program in
response to exceptional conditions and external stim-
uli. When an interruption occurs, the CPU places the
current PSW in an assigned storage location, called
the old-PSW location, for the particular class of inter-
ruption. The CPU fetches a new PSW from a second
assigned storage location. This new PSW deter-
mines the next program to be executed. When it has
finished processing the interruption, the program
handling the interruption may reload the old PSW,
making it again the current PSW, so that the inter-
rupted program can continue.

There are six classes of interruption: external, I/O,
machine check, program, restart, and supervisor call.
Each class has a distinct pair of old-PSW and new-
PSW locations permanently assigned in real storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators
in general arithmetic and logical operations. Each

register contains 64 bit positions. The general regis-
ters are identified by the numbers 0-15 and are des-
ignated by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R field
of the instruction.

For some operations, either bits 32-63 or bits 0-63 of
two adjacent general registers are coupled, providing
a 64-bit or 128-bit format, respectively. In these oper-
ations, the program must designate an even-num-
bered register, which contains the leftmost (high-
order) 32 or 64 bits. The next higher-numbered reg-
ister contains the rightmost (low-order) 32 or 64 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16 gen-
eral registers are also used as base-address and
index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or X field in an instruction. A value of zero in the
B or X field specifies that no base or index is to be
applied, and, thus, general register 0 cannot be des-
ignated as containing a base address or index.

Floating-Point Registers

All floating-point instructions (FPS, BFP, DFP, and
HFP) use the same set of floating-point registers.
The CPU has 16 floating-point registers. The floating-
point registers are identified by the numbers 0-15
and are designated by a four-bit R field in floating-
point instructions. Each floating-point register is 64
bits long and can contain either a short (32-bit) or a
long (64-bit) floating-point operand. As shown in
Figure 2-2 on page 2-4, pairs of floating-point regis-
ters can be used for extended (128-bit) operands.
Each of the eight pairs is referred to by the number of
the lower-numbered register of the pair.

Floating-Point-Control Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The FPC
register is described in the section “Floating-Point-
Control (FPC) Register” on page 9-9.

Chapter 2. Organization 2-3

R Field Control Access General Floating-Point

and Registers Registers Registers Registers
Register

Number |«—— 64 bits —»| |« 32 bits]| | «—— 64 bits ——»| | «—— 64 bits —>|
o000 | | | | r |l |
oot 1 | | | |+ .l |
oo 2 | | | |t |+ |
cort 3| | | |+ | |
o0 ¢ | | | | ¢ |l |
oot s | | | |+ | |
oo 6 | | | |t | ¥ |
ot 7 | | | |+ | |
1000 8 | | | |t | 1l |
toot ¢ | | | | .l |
1010 10 | | | |t | ¥ |
tort 11 | | | |+ | |
1100 12 | | | |t |l |
trot 13 | | | |+ .l |
1110 14 | | | |t |+ |
s | | | |+ | |

Note: The arrows indicate that the two registers may be coupled as a double-register pair, designated by specifying the
lower-numbered register in the R field. For example, the floating-point register pair 13 and 15 is designated by 1101
binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers

2-4 z/Architecture Principles of Operation

Control Registers

The CPU has 16 control registers, each having 64 bit
positions. The bit positions in the registers are
assigned to particular facilities in the system, such as
program-event recording, and are used either to
specify that an operation can take place or to furnish
special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE CON-
TROL. Multiple control registers can be addressed
by these instructions.

Access Registers

The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions con-
taining an indirect specification (not described here in
detail) of an address-space-control element. An
address-space-control element is a parameter used
by the dynamic-address-translation (DAT) mecha-
nism to translate references to a corresponding
address space. When the CPU is in a mode called
the access-register mode (controlled by bits in the
PSW), an instruction B field, used to specify a logical
address for a storage-operand reference, designates
an access register, and the address-space-control
element specified by the access register is used by
DAT for the reference being made. For some instruc-
tions, an R field is used instead of a B field. Instruc-
tions are provided for loading and storing the
contents of the access registers and for moving the
contents of one access register to another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access register
0 always designates the current instruction space.
When one of access registers 1-15 is used to desig-
nate an address space, the CPU determines which
address space is designated by translating the con-
tents of the access register. When access register 0
is used to designate an address space, the CPU
treats the access register as designating the current
instruction space, and it does not examine the actual
contents of the access register. Therefore, the 16
access registers can designate, at any one time, the
current instruction space and a maximum of 15 other
spaces.

Cryptographic Facility

Depending on the model, an integrated cryptographic
facility may be provided as an extension of the CPU.
When the cryptographic facility is provided on a CPU,
it functions as an integral part of that CPU. A sum-
mary of the benefits of the cryptographic facility is
given on page 1-18; the facility is otherwise not
described.

External Time Reference

Depending on the model, an external time reference
(ETR) may be connected to the configuration. A sum-
mary of the benefits of the ETR is given on
page 1-19; the facility is otherwise not described.

I/0

Input/output (1/O) operations involve the transfer of
information between main storage and an I/O device.
I/O devices and their control units attach to the chan-
nel subsystem, which controls this data transfer.

Channel Subsystem

The channel subsystem directs the flow of informa-
tion between 1/0O devices and main storage. It
relieves CPUs of the task of communicating directly
with 1/0 devices and permits data processing to pro-
ceed concurrently with I/O processing. The channel
subsystem uses one or more channel paths as the
communication link in managing the flow of informa-
tion to or from 1/O devices. As part of I/O processing,
the channel subsystem also performs the path-man-
agement function of testing for channel-path avail-
ability, selecting an available channel path, and
initiating execution of the operation with the 1/O
device. Within the channel subsystem are subchan-
nels.

One subchannel is provided for and dedicated to
each /0O device accessible to the channel sub-
system. Each subchannel contains storage for infor-
mation concerning the associated 1/O device and its
attachment to the channel subsystem. The subchan-
nel also provides storage for information concerning
I/O operations and other functions involving the asso-

Chapter 2. Organization 2-5

ciated 1/O device. Information contained in the sub-
channel can be accessed by CPUs using I/O
instructions as well as by the channel subsystem and
serves as the means of communication between any
CPU and the channel subsystem concerning the
associated 1/O device. The actual number of sub-
channels provided depends on the model and the
configuration; the maximum number of subchannels
is 65,536.

Channel Paths

I/O devices are attached through control units to the
channel subsystem via channel paths. Control units
may be attached to the channel subsystem via more
than one channel path, and an I/O device may be
attached to more than one control unit. In all, an indi-
vidual I/O device may be accessible to a channel
subsystem by as many as eight different channel
paths, depending on the model and the configuration.
The total number of channel paths provided by a
channel subsystem depends on the model and the
configuration; the maximum number of channel paths
is 256.

A channel path can use one of three types of com-
munication links:

e System/360 and System/370 I/O interface, called
the parallel-I/O interface; the channel path is
called a parallel channel path

e ESCON I/O interface, called a serial-l/O inter-
face; the channel path is called a serial channel
path

e FICON 1/O interface, also called a serial-I/O
interface; the channel path again is called a
serial channel path

Each parallel-l/O interface consists of a number of
electrical signal lines between the channel sub-
system and one or more control units. Eight control
units can share a single parallel-1/O interface. Up to
256 1/0O devices can be addressed on a single paral-
lel-1/0O interface. The parallel-I/O interface is
described in the publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
Original Equipment Manufacturers’ Information,
GA22-6974.

2-6 z/Architecture Principles of Operation

Each serial-I/O interface consists of two optical-fiber
conductors between any two of a channel sub-
system, a dynamic switch, and a control unit. A
dynamic switch can be connected by means of multi-
ple serial-1/O interfaces to either the same or different
channel subsystems and to multiple control units.
The number of control units which can be connected
on one channel path depends on the channel-sub-
system and dynamic-switch capabilities. Up to 256
devices can be attached to each control unit that
uses the serial-1/O interface, depending on the con-
trol unit. The ESCON I/O interface is described in
the publication ESA/390 ESCON I/O Interface,
SA22-7202. The FICON I/O interface is described in
the ANSI standards document Fibre Channel - Sin-
gle-Byte Command Code Sets-2 (FC-SB-2).

I/0 Devices and Control Units

I/O devices include such equipment as printers, mag-
netic-tape units, direct-access-storage devices, dis-
plays, keyboards, communications controllers,
teleprocessing devices, and sensor-based equip-
ment. Many I/O devices function with an external
medium, such as paper or magnetic tape. Other I/O
devices handle only electrical signals, such as those
found in displays and communications networks. In
all cases, 1/0-device operation is regulated by a con-
trol unit that provides the logical and buffering capa-
bilities necessary to operate the associated 1/0O
device. From the programming point of view, most
control-unit functions merge with 1/O-device func-
tions. The control-unit function may be housed with
the I/O device or in the CPU, or a separate control
unit may be used.

Operator Facilities

The operator facilities provide the functions neces-
sary for operator control of the machine. Associated
with the operator facilities may be an operator-con-
sole device, which may also be used as an I/O device
for communicating with the program.

The main functions provided by the operator facilities
include resetting, clearing, initial program loading,
start, stop, alter, and display.

Chapter 3. Storage

Storage Addressing. 3-2
Information Formats. 3-2
Integral Boundaries 3-3

Address Typesand Formats 3-4
Address Types. 3-4

Absolute Address. 3-4
Real Address. 3-4
Virtual Address 3-5
Primary Virtual Address. 3-5
Secondary Virtual Address 3-5
AR-Specified Virtual Address 3-5
Home Virtual Address 3-5
Logical Address 3-5
Instruction Address 3-5
Effective Address. 3-5
Address Size and Wraparound 3-5
Address Wraparound. 3-6

StorageKey. i 3-8

Protection 3-10
Key-Controlled Protection 3-10

Storage-Protection-Override Control. 3-11
Fetch-Protection-Override Control 3-12
Access-List-Controlled Protection 3-12
DAT Protection 3-12
Low-Address Protection. 3-13
Suppression on Protection. 3-14
Enhanced Suppression on Protection. ... 3-15

Reference Recording. 3-16

Change Recording. 3-16
Change-Recording Override 3-17

Prefixing. o 3-17

Address Spaces i 3-18

Changing to Different Address Spaces ... 3-19
Address-Space Number 3-19

ASN-Second-Table-Entry Sequence Number 3-20
ASN-Second-Table-Entry Instance Number

andASNReuse...................... 3-21
ASN Translation 3-26
ASN-TranslationControls 3-26
Control Register14 3-26
ASN-Translation Tables. 3-27
ASN-First-Table Entries. 3-27
ASN-Second-Table Entries 3-27
ASN-Translation Process 3-29
ASN-First-Table Lookup 3-29

ASN-Second-Table Lookup 3-30
Recognition of Exceptions during ASN
Translation 3-31
ASN Authorization. 3-31
ASN-Authorization Controls 3-31
Control Register4.................... 3-31
ASN-Second-Table Entry 3-31
Authority-Table Entries 3-31
ASN-Authorization Process 3-32
Authority-Table Lookup. 3-32
Recognition of Exceptions during ASN
Authorization. 3-33
Dynamic Address Translation............... 3-34
Translation Control 3-36
Translation Modes. 3-36
Control Register 0. 3-36
Control Register1.................... 3-37
Control Register 7. 3-39
Control Register13. 3-39
Translation Tables 3-40
Region-Table Entries 3-40
Segment-Table Entries 3-42
Page-Table Entries 3-44
Translation Process 3-44
Inspection of Real-Space Control 3-46
Inspection of Designation-Type Control . . .3-46
Lookup in a Table Designated by an
Address-Space-Control Element 3-48
Lookup in a Table Designated by a
Region-Table Entry. 3-50
Page-Table Lookup. 3-51
Formation of the Real and Absolute
Addresses. 3-52
Recognition of Exceptions during
Translation 3-52
Translation-Lookaside Buffer 3-52
TLB Structure 3-53
Formation of TLB Entries 3-53
Useof TLBEntries 3-54
Modification of Translation Tables 3-55
Address Summary 3-58
Addresses Translated. 3-58
Handling of Addresses 3-58
Assigned Storage Locations. 3-58

This chapter discusses the representation of informa-
tion in main storage, as well as addressing, protec-

© Copyright IBM Corp. 1990-2008

tion, and reference and change recording. The
aspects of addressing which are covered include the

3-1

format of addresses, the concept of address spaces,
the various types of addresses, and the manner in
which one type of address is translated to another
type of address.

A list of permanently assigned storage locations
appears at the end of the chapter.

Main storage provides the system with directly
addressable fast-access storage of data. Both data
and programs must be loaded into main storage
(from input devices) before they can be processed.

Main storage may include one or more smaller faster-
access buffer storages, sometimes called caches. A
cache is usually physically associated with a CPU or
an /O processor. The effects, except on perfor-
mance, of the physical construction and use of dis-
tinct storage media are generally not observable by
the program.

Separate caches may be maintained for instructions
and for data operands. Information within a cache is
maintained in contiguous bytes on an integral bound-
ary called a cache block or cache line (or line, for
short). A model may provide the EXTRACT CACHE
ATTRIBUTE instruction which returns the size of a
cache line in bytes. A model may also provide the
PREFETCH DATA and PREFETCH DATA RELATIVE
LONG instructions which effect the prefetching of
storage into the data or instruction cache or the
releasing of data from the cache.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem activ-
ity or by a concurrent reference to the same storage
location by another CPU. When concurrent requests
to a main-storage location occur, access normally is
granted in a sequence determined by the system. If a
reference changes the contents of the location, any
subsequent storage fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is vol-
atile, the contents of main storage are not preserved
when power is turned off. If it is nonvolatile, turning
power off and then back on does not affect the con-
tents of main storage, provided all CPUs are in the
stopped state and no references are made to main
storage when power is being turned off. In both types
of main storage, the contents of storage keys are not
necessarily preserved when the power for main stor-
age is turned off.

3-2 z/Architecture Principles of Operation

Note: Because most references in this publication
apply to virtual storage, the abbreviated term “stor-
age” is often used in place of “virtual storage.” The
term “storage” may also be used in place of “main
storage,” “absolute storage,” or “real storage” when
the meaning is clear. The terms “main storage” and
“absolute storage” are used to describe storage
which is addressable by means of an absolute
address. The terms describe fast-access storage, as
opposed to auxiliary storage, such as that provided
by direct-access storage devices. “Real storage” is
synonymous with “absolute storage” except for the
effects of prefixing.

Programming Note: On models that implement sep-
arate caches for instructions and data operands, a
significant delay may be experienced if the program
stores into a cache line from which instructions are
subsequently fetched, regardless of whether the
store alters the instructions that are subsequently
fetched.

Storage Addressing

Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is subdi-
vided into units of eight bits. An eight-bit unit is called
a byte, which is the basic building block of all informa-
tion formats.

Each byte location in storage is identified by a unique
nonnegative integer, which is the address of that byte
location or, simply, the byte address. Adjacent byte
locations have consecutive addresses, starting with O
on the left and proceeding in a left-to-right sequence.
Addresses are unsigned binary integers and are 24,
31, or 64 bits. Addresses are described in “Address
Size and Wraparound” on page 3-5.

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a group
of bytes, at a time. Unless otherwise specified, a
group of bytes in storage is addressed by the left-
most byte of the group. The number of bytes in the
group is either implied or explicitly specified by the
operation to be performed. When used in a CPU
operation, a group of bytes is called a field.

Within each group of bytes, bits are nhumbered in a
left-to-right sequence. The leftmost bits are some-
times referred to as the “high-order” bits and the
rightmost bits as the “low-order” bits. Bit numbers are
not storage addresses, however. Only bytes can be
addressed. To operate on individual bits of a byte in
storage, it is necessary to access the entire byte.

The bits in a byte are numbered 0 through 7, from left
to right.

The bits in an address may be numbered 8-31 or
40-63 for 24-bit addresses or 1-31 or 33-63 for 31-bit
addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are con-
secutively numbered starting from 0.

For purposes of error detection, and in some models
for correction, one or more check bits may be trans-
mitted with each byte or with a group of bytes. Such
check bits are generated automatically by the
machine and cannot be directly controlled by the pro-
gram. References in this publication to the length of
data fields and registers exclude mention of the
associated check bits. All storage capacities are
expressed in number of bytes.

When the length of a storage-operand field is implied
by the operation code of an instruction, the field is
said to have a fixed length, which can be one, two,
four, eight, or sixteen bytes. Larger fields may be
implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to have
a variable length. Variable-length operands can vary
in length by increments of one byte.

When information is placed in storage, the contents
of only those byte locations are replaced that are
included in the designated field, even though the
width of the physical path to storage may be greater
than the length of the field being stored.

Integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral for
a unit of information when its storage address is a
multiple of the length of the unit in bytes. Special
names are given to fields of 2, 4, 8, and 16 bytes on
an integral boundary. A halfword is a group of two
consecutive bytes on a two-byte boundary and is the
basic building block of instructions. A word is a group
of four consecutive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes on
an eight-byte boundary. A quadword is a group of 16
consecutive bytes on a 16-byte boundary. (See
Figure 3-1 on page 3-4.)

When storage addresses designate halfwords,
words, doublewords, and quadwords, the binary rep-
resentation of the address contains one, two, three,
or four rightmost zero bits, respectively.

Instructions must be on two-byte integral boundaries,
and CCWs, IDAWs, MIDAWSs, and the storage oper-
ands of certain instructions must be on other integral
boundaries. The storage operands of most instruc-
tions do not have boundary-alignment requirements.

Programming Note: For fixed-field-length opera-
tions with field lengths that are a power of 2, signifi-
cant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length. To
improve performance, frequently used storage oper-
ands should be aligned on integral boundaries.

Chapter 3. Storage 3-3

e— Storage Addresses

Bytes 0 1 2 3 4 5 6 7 8 9 (10| 1112 |13 |14 | 15| 16

I T T T T T I T I
Halfwords 0 2 4 6 8 10 12 14 16

| | | | | l | l |

T T T T T T T T T T T T T
Words 0 4 8 12 16

| | L | | L | | | | | | |

T T T T T T T T T T T T T T T
Doublewords 0 8 16

| | l | | | l | | | l | | | |

T T T T T T T T T T T T T T T
Quadwords 0 16

| l | | | l | | | l | | | l |

Figure 3-1. Integral Boundaries with Storage Addresses

Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: absolute,
real, and virtual. The addresses are distinguished on
the basis of the transformations that are applied to
the address during a storage access. Address trans-
lation converts virtual to real, and prefixing converts
real to absolute. In addition to the three basic
address types, additional types are defined which are
treated as one or another of the three basic types,
depending on the instruction and the current mode.

Absolute Address

An absolute address is the address assigned to a
main-storage location. An absolute address is used
for a storage access without any transformations per-
formed on it.

The channel subsystem and all CPUs in the configu-

ration refer to a shared main-storage location by
using the same absolute address. Available main

3-4 z/Architecture Principles of Operation

storage is usually assigned contiguous absolute
addresses starting at 0, and the addresses are
always assigned in complete 4K-byte blocks on inte-
gral boundaries. An exception is recognized when an
attempt is made to use an absolute address in a
block which has not been assigned to physical loca-
tions. On some models, storage-reconfiguration con-
trols may be provided which permit the operator to
change the correspondence between absolute
addresses and physical locations. However, at any
one time, a physical location is not associated with
more than one absolute address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred to
as absolute storage.

Real Address
A real address identifies a location in real storage.
When a real address is used for an access to main
storage, it is converted, by means of prefixing, to an
absolute address.

At any instant there is one real-address to absolute-
address mapping for each CPU in the configuration.
When a real address is used by a CPU to access

main storage, it is converted to an absolute address
by prefixing. The particular transformation is defined
by the value in the prefix register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as real
storage.

Virtual Address

A virtual address identifies a location in virtual stor-
age. When a virtual address is used for an access to
main storage, it is translated by means of dynamic
address translation, either (a) to a real address which
is then further converted by prefixing to an absolute
address, or (b) directly to an absolute address.

Primary Virtual Address

A primary virtual address is a virtual address which is
to be translated by means of the primary address-
space-control element. Logical addresses are
treated as primary virtual addresses when in the pri-
mary-space mode. Instruction addresses are treated
as primary virtual addresses when in the primary-
space mode, secondary-space mode, or access-reg-
ister mode. The first-operand address of MOVE TO
PRIMARY and the second-operand address of
MOVE TO SECONDARY are always treated as pri-
mary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual address
which is to be translated by means of the secondary
address-space-control element. Logical addresses
are treated as secondary virtual addresses when in
the secondary-space mode. The second-operand
address of MOVE TO PRIMARY and the first-oper-
and address of MOVE TO SECONDARY are always
treated as secondary virtual addresses.

AR-Specified Virtual Address

An AR-specified virtual address is a virtual address
which is to be translated by means of an access-reg-
ister-specified address-space-control element. Logi-
cal addresses are treated as AR-specified addresses
when in the access-register mode.

Home Virtual Address

A home virtual address is a virtual address which is
to be translated by means of the home address-
space-control element. Logical addresses and
instruction addresses are treated as home virtual
addresses when in the home-space mode.

Logical Address

Except where otherwise specified, the storage-oper-
and addresses for most instructions are logical
addresses. Logical addresses are treated as real
addresses in the real mode, as primary virtual
addresses in the primary-space mode, as secondary
virtual addresses in the secondary-space mode, as
AR-specified virtual addresses in the access-register
mode, and as home virtual addresses in the home-
space mode. Some instructions have storage-oper-
and addresses or storage accesses associated with
the instruction which do not follow the rules for logical
addresses. In all such cases, the instruction definition
contains a definition of the type of address.

Instruction Address

Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the real
mode, as primary virtual addresses in the primary-
space mode, secondary-space mode, or access-reg-
ister mode, and as home virtual addresses in the
home-space mode. The instruction address in the
current PSW and the target address of execute-type
instructions (EXECUTE and EXECUTE RELATIVE
LONG) are instruction addresses.

Effective Address

In some situations, it is convenient to use the term
“effective address” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address arith-
metic. Address arithmetic is the addition of the base
and displacement or of the base, index, and displace-
ment.

Address Size and Wraparound

An address size refers to the maximum number of
significant bits that can represent an address. Three
sizes of addresses are provided: 24-bit, 31-bit, and
64-bit. A 24-bit address can accommodate a maxi-
mum of 16,777,216 (16M) bytes; with a 31-bit
address, 2,147,483,648 (2G) bytes can be
addressed; and, with a 64-bit address,
18,446,744,073,709,551,616 (16E) bytes can be
addressed. The bits of a 24-bit, 31-bit, or 64-bit
address produced by address arithmetic under the
control of the current addressing mode are num-
bered 40-63, 33-63, and 0-63, respectively, corre-

Chapter 3. Storage 3-5

sponding to the numbering of base-address and
index bits in a general register:

24-bit Address \

40 63

31-bit Address \

33

63

\ 64-bit Address \

The bits of an address that is 31 bits regardless of
the addressing mode are numbered 1-31, and, when
a 24-bit or 31-bit address is contained in a four-byte
field in storage, the bits are numbered 8-31 or 1-31,
respectively:

24-bit Address ‘

31-bit Address ‘
01 31

A 24-bit or 31-bit virtual address is expanded to 64
bits by appending 40 or 33 zeros, respectively, on the
left before it is translated by means of the DAT pro-
cess, and a 24-bit or 31-bit real address is similarly
expanded to 64 bits before it is transformed by prefix-
ing. A 24-bit or 31-bit absolute address is expanded
to 64 bits before main storage is accessed. Thus, the
24-bit address always designates a location in the
first 16M-byte block of the 16E-byte storage address-
able by a 64-bit address, and the 31-bit address
always designates a location in the first 2G-byte
block.

Unless specifically stated to the contrary, the follow-
ing definition applies in this publication: whenever the
machine generates and provides to the program a
24-bit or 31-bit address, the address is made avail-
able (placed in storage or loaded into a general regis-
ter) by being imbedded in a 32-bit field, with the
leftmost eight bits or one bit in the field, respectively,
set to zeros. When the address is loaded into a gen-
eral register, bits 0-31 of the register remain
unchanged.

The size of effective addresses is controlled by bits
31 and 32 of the PSW, the extended-addressing-
mode bit and the basic-addressing-mode bit, respec-
tively. When bits 31 and 32 are both zero, the CPU is
in the 24-bit addressing mode, and 24-bit operand
and instruction effective addresses are specified.

3-6

z/Architecture Principles of Operation

63

When bit 31 is zero and bit 32 is one, the CPU is in
the 31-bit addressing mode, and 31-bit operand and
instruction effective addresses are specified. When
bits 31 and 32 are both one, the CPU is in the 64-bit
addressing mode, and 64-bit operand and instruction
effective addresses are specified (see “Address Gen-
eration” on page 5-8).

The sizes of the real or absolute addresses used or
yielded by the ASN-translation, ASN-authorization,
PC-number-translation, and access-register-transla-
tion processes are always 31 bits regardless of the
current addressing mode. Similarly, the sizes of the
real or absolute addresses used or yielded by the
DAT, stacking, unstacking, and tracing processes are
always 64 bits.

The size of the data address in a CCW is under con-
trol of the CCW-format-control bit in the operation-
request block (ORB) designated by a START SUB-
CHANNEL instruction. The CCWs with 24-bit and
31-bit addresses are called format-0 and format-1
CCWs, respectively. Format-0 and format-1 CCWs
are described in “Basic I/O Functions” on page 15-1.
Similarly, the size of the data address in an IDAW is
under control of the IDAW-format-control bit in the
ORB. The IDAWs with 31-bit and 64-bit addresses
are called format-1 and format-2 IDAWSs, respectively.
MIDAWSs contain 64-bit data addresses. IDAWs and
MIDAWSs are described in Chapter 15, “Basic I/O
Functions.”

Address Wraparound

The CPU performs address generation when it forms
an operand or instruction address or when it gener-
ates the address of a table entry from the appropriate
table origin and index. It also performs address gen-
eration when it increments an address to access suc-
cessive bytes of a field. Similarly, the channel
subsystem performs address generation when it
increments an address (1) to fetch a CCW, (2) to
fetch an IDAW, (3) to fetch a MIDAW, (4) to transfer

data, or (5) to compute the address of an I/O mea-
surement block.

When, during the generation of the address, an
address is obtained that exceeds the value allowed
for the address size (2** - 1, 2%' - 1, or 2% - 1), one of
the following two actions is taken:

1. The carry out of the high-order bit position of the
address is ignored. This handling of an address
of excessive size is called wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears to
follow the maximum allowable address. Address
arithmetic and wraparound occur before transforma-
tion, if any, of the address by DAT or prefixing.

Addresses generated by the CPU that may be virtual
addresses always wrap. Wraparound also occurs
when the linkage-stack-entry address in control reg-
ister 15 is decremented below 0 by PROGRAM
RETURN. For CPU table entries that are addressed
by real or absolute addresses, it is unpredictable
whether the address wraps or an addressing excep-
tion is recognized.

For channel-program execution, when the generated
address exceeds the value for the address size (or,
for the read-backward command is decremented
below 0), an 1/0O program-check condition is recog-
nized.

Figure 3-2 on page 3-7 identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.

Handling when
Address | Address Would
Address Generation for Type Wrap

Instructions and operands when EAM and BAM are zero L,ILR,V W24
Successive bytes of instructions and operands when EAM and BAM are zero I,L,V1 W24
Instructions and operands when EAM is zero and BAM is one L,ILRV W31
Successive bytes of instructions and operands when EAM is zero and BAM is one LV W31
Instructions and operands when EAM and BAM are one L,ILRV W64
Successive bytes of instructions and operands when EAM and BAM are one I,L,V1 W64
DAT-table entries when used for implicit translation or for LPTEA, LRA, LRAG, or STRAG AorR? X64
ASN-second-table, authority-table (during ASN authorization), linkage-table, linkage-first- R X31

table, linkage-second-table, and entry-table entries
Authority-table (during access-register translation) and access-list entries AorR? X31
Linkage-stack entry Vv W64
I/O measurement block A P31
For a channel program with format-0 CCWs:

Successive CCWs A P24

Successive IDAWs A P24

Successive MIDAWSs A P24

Successive bytes of 1/0 data (without IDAWs and MIDAWS) A P24

Successive bytes of I/0 data (with format-1 IDAWSs) A P31

Figure 3-2. Address Wraparound (Part 1 of 2).

Chapter 3. Storage 3-7

Handling when
Address | Address Would
Address Generation for Type Wrap
Successive bytes of 1/0O data (with format-2 IDAWSs) A P64
Successive bytes of I/O data (with MIDAWS) A P64
For a channel program with format-1 CCWs:
Successive CCWs A P31
Successive IDAWs A P31
Successive MIDAWSs A P31
Successive bytes of 1/0O data (without IDAWs and MIDAWSs) A P31
Successive bytes of 1/0O data (with format-1 IDAWS) A P31
Successive bytes of 1/0O data (with format-2 IDAWSs) A P64
Successive bytes of I/0 data (with MIDAWS) A P64

Explanation:

1

A Absolute address.
BAM Basic-addressing-mode bit in the PSW.
EAM Extended-addressing-mode bit in the PSW.
I Instruction address.
L Logical address.
P24 An I/O program-check condition is recognized when the address exceeds 2% - 1 or is decremented below zero.
P31 An I/O program-check condition is recognized when the address exceeds 2% - 1 or is decremented below zero.
P64 An 1/0O program-check condition is recognized when the address exceeds 2% -1 or is decremented below zero.
R Real address.
\ Virtual address.
W24 Wrap to location 0 after location 2> - 1 and vice versa.
W31 Wrap to location 0 after location 2% - 1 and vice versa.
W64 Wrap to location 0 after location 2% -1 and vice versa.
X31 When the address exceeds 2%' - 1, it is unpredictable whether the address wraps to location 0 after location
2%' - 1 or whether an addressing exception is recognized.
X64 When the address exceeds 2% - 1, it is unpredictable whether the address wraps to location 0 after location

Real addresses do not apply in this case since the instructions which designate operands by means of real
addresses cannot designate operands that cross boundary 2%, 2%', 2%,
It is unpredictable whether the address is absolute or real.

2% - 1 or whether an addressing exception is recognized.

Figure 3-2. Address Wraparound (Part 2 of 2).

The bit positions in the storage key are allocated as

Storage Key

A storage key is associated with each 4K-byte block
of storage that is available in the configuration. The
storage key has the following format:

| Acc [FRle

0 45 6

3-8 z/Architecture Principles of Operation

follows:

Access-Control Bits (ACC): If a reference is subject
to key-controlled protection, the four access-control
bits, bits 0-3, are matched with the four-bit access
key when information is stored and when information
is fetched from a location that is protected against
fetching.

Fetch-Protection Bit (F): If a reference is subject to
key-controlled protection, the fetch-protection bit, bit
4, controls whether key-controlled protection applies
to fetch-type references: a zero indicates that only
store-type references are monitored and that fetching
with any access key is permitted; a one indicates that
key-controlled protection applies to both fetching and
storing. No distinction is made between the fetching
of instructions and of operands.

Reference Bit (R): The reference bit, bit 5, normally
is set to one each time a location in the correspond-
ing storage block is referred to either for storing or for
fetching of information.

Change Bit (C): The change bit, bit 6, is set to one
each time information is stored at a location in the
corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key may be set by SET STOR-
AGE KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. Additionally, the
instruction RESET REFERENCE BIT EXTENDED
provides a means of inspecting the reference and
change bits and of setting the reference bit to zero.
Bits 0-4 of the storage key are inspected by the
INSERT VIRTUAL STORAGE KEY instruction. The
contents of the storage key are unpredictable during
and after the execution of the usability test of the
TEST BLOCK instruction. When the conditional
SSKE facility is installed, SET STORAGE KEY
EXTENDED may be used to set all or portions of a
storage key based on program-specified criteria.
When the enhanced-DAT facility is installed, the SET
STORAGE KEY EXTENDED or PERFORM FRAME
MANAGEMENT FUNCTION instructions may be
used to set all or portions of one or more storage
keys based on program-specified criteria.

When enhanced DAT applies,1 and the invalid bit of
the segment-table entry used in the translation is
zero, the following additional conditions are in effect:

* When the STE-format control (FC, bit 53 of the
segment-table entry used during a translation) is
zero, bit 55 of the page-table entry used during
translation is the change-recording override (CO)
for the page. When the CO bit in the page-table
entry is one, change recording is unpredictable
for any store operations to the page.

e When the format-control bit (FC) in the segment-
table entry is one, the following applies:

— Bit position 47 of the segment-table entry
contains the ACCF-validity control. The
ACCF-validity control determines the validity
of the access-control and fetch-protection
bits in the STE. When the ACCF-validity con-
trol is zero, key-controlled protection uses
the access-control and fetch protection bits
in the storage key for the 4K-byte block cor-
responding to the address.

— When the ACCF-validity control is one, bit
positions 48-52 of the segment-table entry
contain the access-control bits and the fetch-
protection bit for the segment. When deter-
mining accessibility to a storage operand, it
is unpredictable whether bits 48-52 of the
STE or bits 0-4 of the individual storage keys
for the 4K-byte blocks composing the seg-
ment are examined. See “Translation Pro-
cess” on page 3-44 for further details.

— Bit 55 of the segment-table entry is the
change-recording override (CO) for the seg-
ment. When the CO bit in the segment-table
entry is one, it is unpredictable whether the
change bit is set for any store operations to
the segment.

Programming Notes:

1. When enhanced DAT applies, and both the
ACCF-validity control and the STE-format control
(bits 47 and 53 of the segment-table entry,
respectively) are one, bits 48-52 of the STE con-
tain access-control and fetch protection bits
which may be used in lieu of the corresponding
bits in the storage keys. In this case, the program
is responsible for ensuring that the access-con-
trol and fetch-protection bits in the STE are iden-
tical to the corresponding bits in each of the 256
storage keys for the segment. See “Modification
of Translation Tables” on page 3-55 for restric-
tions on modifying the STE or the storage keys
when the STE-format control is one.

2. When enhanced DAT applies and the STE format
control is zero, the change-recording override in
the PTE controls whether change recording for
the page’s 4K-byte block may be bypassed.
When enhanced DAT applies and the STE-for-
mat control is one, the change-recording override

| 1. See “Enhanced-DAT Terminology:” on page 3-37 for an explanation of the term “enhanced-DAT applies.”

Chapter 3. Storage 3-9

in the STE controls whether change recording for
any of the segment’s 256 4K-byte blocks may be
bypassed. See “Modification of Translation
Tables” on page 3-55 for restrictions on modify-
ing the change-recording override in either the
STE or the PTE.

Protection

Four protection facilities are provided to protect the
contents of main storage from destruction or misuse
by programs that contain errors or are unauthorized:
key-controlled protection, access-list-controlled pro-
tection, DAT protection, and low-address protection.
The protection facilities are applied independently;
access to main storage is only permitted when none
of the facilities prohibits the access.

Key-controlled protection affords protection against
improper storing or against both improper storing and
fetching, but not against improper fetching alone.

Key-Controlled Protection

When key-controlled protection applies to a storage
access, a store is permitted only when the storage
key matches the access key associated with the
request for storage access; a fetch is permitted when
the keys match or when the fetch-protection bit of the
storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the access
key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

Conditions Is Access to
Fetch-Protection Storage Permitted
Bit of Storage Key | Key Relation | Fetch Store

Explanation:

Match The four access-control bits of the storage key
are equal to the access key, or the access key is

zero.
Yes Access is permitted.
No Access is not permitted. On fetching, the

information is not made available to the
program; on storing, the contents of the storage
location are not changed.

Conditions Is Access to
Fetch-Protection Storage Permitted
Bit of Storage Key | Key Relation | Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Figure 3-3. Summary of Protection Action

3-10

z/Architecture Principles of Operation

Figure 3-3. Summary of Protection Action

When the access to storage is initiated by the CPU
and key-controlled protection applies, the PSW key is
the access key, except that the access key is speci-
fied in a general register for the first operand of
MOVE TO SECONDARY and MOVE WITH DESTI-
NATION KEY, for the second operand of MOVE TO
PRIMARY, MOVE WITH KEY, and MOVE WITH
SOURCE KEY, and for either the first or the second
operand of MOVE PAGE. The access key may the
PSW key or the key specified in an operand-access
control for either operand of MOVE WITH OPTIONAL
SPECIFICATIONS. The PSW key occupies bit posi-
tions 8-11 of the current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the access
key. The subchannel key for a channel program is
specified in the operation-request block (ORB).
When, for purposes of channel-subsystem monitor-
ing, an access to the measurement block is made,
the measurement-block key is the access key. The
measurement-block key is specified by the SET
CHANNEL MONITOR instruction. Even when the
enhanced-DAT facility is installed, channel sub-
system accesses continue to reference the storage
keys for each 4K-byte block; because channel sub-
system accesses are not subject to dynamic address
translation, the access-control bits and fetch-protec-
tion bit in the segment-table entry are not used by the
channel subsystem.

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruction
is terminated, and a program interruption for a pro-
tection exception takes place. However, the unit of
operation or the execution of the instruction may be
suppressed, as described in the section “Suppres-
sion on Protection” on page 3-14. When a channel-

program access is prohibited, the start function is
ended, and the protection-check condition is indi-
cated in the associated interruption-response block
(IRB). When a measurement-block access is prohib-
ited, the /O measurement-block protection-check
condition is indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access is
prohibited, the protected information is not loaded
into a register, moved to another storage location, or
provided to an I/O device. For a prohibited instruction
fetch, the instruction is suppressed, and an arbitrary
instruction-length code is indicated.

Key-controlled protection is independent of whether
the CPU is in the problem or the supervisor state
and, except as described below, does not depend on
the type of CPU instruction or channel-command
word being executed.

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by the
program and that are used by the CPU to store or
fetch information are subject to key-controlled protec-
tion.

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches may or
may not apply when the fetch-protection-override
control is one, depending on the effective address
and the private-space control.

The storage-protection-override control and fetch-
protection-override control do not affect storage ref-
erences made by the channel subsystem.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the 1/0 measurement block, or by a channel
program to fetch a CCW, IDAW, or MIDAW or to
access a data area designated during the execution
of a CCW, are subject to key-controlled protection.
However, if a CCW, an IDAW, a MIDAW, or output
data is prefetched, a protection check is not indicated
until the CCW, IDAW, or MIDAW is due to take control
or until the data is due to be written.

Key-controlled protection is not applied to accesses
that are implicitly made for any of such sequences
as:

e Aninterruption
* CPU logout
e Fetching of table entries for access-register

translation, dynamic-address translation, PC-
number translation, ASN translation, or ASN
authorization

e Tracing

e A store-status function

» Storing in real locations 184-191 when TEST
PENDING INTERRUPTION has an operand
address of zero

* Initial program loading

Similarly, protection does not apply to accesses initi-
ated via the operator facilities for altering or display-
ing information. However, when the program explicitly
designates these locations, they are subject to pro-
tection.

Storage-Protection-Override Control

Bit 39 of control register 0 is the storage-protection-
override control. When this bit is one, storage-protec-
tion override is active. When this bit is zero, storage-
protection override is inactive. When storage-protec-
tion override is active, key-controlled storage protec-
tion is ignored for storage locations having an
associated storage-key value of 9. When storage-
protection override is inactive, no special action is
taken for a storage-key value of 9.

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of instruc-
tions whose operand addresses are logical, virtual,
or real. It does not apply to accesses made for the
purpose of channel-program execution or for the pur-
pose of channel-subsystem monitoring.

Storage-protection override has no effect on
accesses which are not subject to key-controlled pro-
tection.

Programming Notes:

1. Storage-protection override can be used to
improve reliability in the case when a possibly
erroneous application program is executed in
conjunction with a reliable subsystem, provided
that the application program needs to access
only a portion of the storage accessed by the

Chapter 3. Storage 3-11

subsystem. The technique for doing this is as fol-
lows. The storage accessed by the application
program is given storage key 9. The storage
accessed by only the subsystem is given some
other nonzero storage key, for example, key 8.
The application is executed with PSW key 9. The
subsystem is executed with PSW key 8 (in this
example). As a result, the subsystem can access
both the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the accesses
to storage made by the CPU and also affects the
result set by TEST PROTECTION. However,
those instructions which, in the problem state,
test the PSW-key mask to determine if a particu-
lar key value may be used are not affected by
whether storage-protection override is active.
These instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM
ADDRESS. To permit these instructions to use
an access key of 9 in the problem state, bit 9 of
the PSW-key mask must be one.

Fetch-Protection-Override Control

Bit 38 of control register 0 is the fetch-protection-
override control. When the bit is one, fetch protection
is ignored for locations at effective addresses 0-2047.
An effective address is the address which exists
before any transformation by dynamic address trans-
lation or prefixing. However, fetch protection is not
ignored if the effective address is subject to dynamic
address translation and the private-space control, bit
55, is one in the address-space-control element used
in the translation.

Fetch-protection override applies to instruction fetch
and to the fetch accesses of instructions whose oper-
and addresses are logical, virtual, or real. It does not
apply to fetch accesses made for the purpose of
channel-program execution or for the purpose of
channel-subsystem monitoring. When this bit is set
to zero, fetch protection of locations at effective
addresses 0-2047 is determined by the state of the
fetch-protection bit of the storage key associated with
those locations.

Fetch-protection override has no effect on accesses
which are not subject to key-controlled protection.

Programming Note: The fetch-protection-override
control allows fetch protection of locations at
addresses 2048-4095 along with no fetch protection
of locations at addresses 0-2047.

Access-List-Controlled Protection

In the access-register mode, bit 6 of the access-list
entry, the fetch-only bit, controls which types of oper-
and references are permitted to the address space
specified by the access-list entry. When the entry is
used in the access-register-translation part of a refer-
ence and bit 6 is zero, both fetch-type and store-type
references are permitted; when bit 6 is one, only
fetch-type references are permitted, and an attempt
to store causes a protection exception to be recog-
nized and the execution of the instruction to be sup-
pressed.

The fetch-only bit is included in the ALB access-list
entry. A change to the fetch-only bit in an access-list
entry in main storage does not necessarily have an
immediate, if any, effect on whether a protection
exception is recognized. However, this change to the
bit will have an effect immediately after PURGE ALB
or a COMPARE AND SWAP AND PURGE instruction
that purges the ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is in
the access-register mode. A violation of access-list-
controlled protection causes condition code 1 to be
set, except that it does not prevent condition code 2
or 3 from being set when the conditions for those
codes are satisfied.

Programming Note: A violation of access-list-con-
trolled protection always causes suppression. A vio-
lation of any of the other protection types may cause
termination.

DAT Protection

The DAT-protection function® controls access to vir-
tual storage by using the DAT-protection bit in each
page-table entry and segment-table entry, and, when
the enhanced-DAT facility is installed, in each region-
table entry. It provides protection against improper
storing.

2. Prior to the enhanced-DAT facility, the DAT-protection function was known as the page-protection facility.

3-12

z/Architecture Principles of Operation

| The DAT-protection bit, bit 54 of the page-table entry,
controls whether storing is allowed into the corre-
sponding 4K-byte page. When the bit is zero, both
fetching and storing are permitted; when the bit is
one, only fetching is permitted. When an attempt is
made to store into a protected page, the contents of
the page remain unchanged, the unit of operation or
the execution of the instruction is suppressed, and a
program interruption for protection takes place.

The DAT-protection bit, bit 54 of the segment-table
entry, controls whether storing is allowed into the cor-
responding 1M-byte segment, as follows:

* When enhanced DAT does not apply, or when
enhanced DAT applies and the STE-format con-
trol is zero, the DAT-protection bit of the segment-
table entry is treated as being ORed into the
DAT-protection-bit position of each entry in the
page table designated by the segment-table
entry. Thus, when the segment-table-entry DAT-
protection bit is one, the effect is as if the DAT-
protection bit were one in each entry in the des-
ignated page table.

* When enhanced DAT applies and the STE-for-
mat control is one, the DAT-protection bit of the
segment-table entry controls whether storing is
allowed into the corresponding 1M-byte seg-
ment. When the bit is zero, both fetching and
storing are permitted; when the bit is one, only
fetching is permitted. When an attempt is made
to store into a protected segment, the contents of
the segment remain unchanged, the unit of oper-
ation or the execution of the instruction is sup-
pressed, and a program interruption for
protection takes place

When enhanced DAT applies, the DAT-protection bit,
bit 54 of the region-table entry, controls whether stor-
ing is allowed into the corresponding region(s). The
DAT-protection bit in a region-table entry is treated as
being ORed into the DAT-protection bit position of
any subsequent region-table entry and segment-
table entry that is used in the translation. When the
STE-format control bit is zero, the DAT-protection bit
is further propagated to the page-table entry, as
described above.

DAT protection applies to all store-type references
that use a virtual address.

Low-Address Protection

The low-address-protection facility provides protec-
tion against the destruction of main-storage informa-
tion used by the CPU during interruption processing.
This is accomplished by prohibiting instructions from
storing with effective addresses in the ranges 0
through 511 and 4096 through 4607 (the first 512
bytes of each of the first and second 4K-byte effec-
tive-address blocks). The range criterion is applied
before address transformation, if any, of the address
by dynamic address translation or prefixing. How-
ever, the range criterion is not applied, with the result
that low-address protection does not apply, if the
effective address is subject to dynamic address
translation and the private-space control, bit 55, is
one in the address-space-control element used in the
translation. Low-address protection does not apply if
the address-space-control element to be used is not
available due to another type of exception.

Low-address protection is under control of bit 35 of
control register 0, the low-address-protection-control
bit. When the bit is zero, low-address protection is off;
when the bit is one, low-address protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction is
terminated, and a program interruption for a protec-
tion exception takes place. However, the unit of oper-
ation or the execution of the instruction may be
suppressed, as described in the section “Suppres-
sion on Protection” on page 3-14.

Any attempt by the program to store by using effec-
tive addresses in the range O through 511 or 4096
through 4607 is subject to low-address protection.
Low-address protection is applied to the store
accesses of instructions whose operand addresses
are logical, virtual, real, or absolute. Low-address
protection is also applied to the trace table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for such
sequences as interruptions, CPU logout, the storing
of the I/O-interruption code in real locations 184-195
by TEST PENDING INTERRUPTION, and the initial-
program-loading and store-status functions, nor is it
applied to data stores during I/O data transfer. How-
ever, explicit stores by a program at any of these
locations are subject to low-address protection.

Chapter 3. Storage 3-13

Programming Notes:

1. Low-address protection and key-controlled pro-
tection apply to the same store accesses, except
that:

a. Low-address protection does not apply to
storing performed by the channel subsystem,
whereas key-controlled protection does.

b. Key-controlled protection does not apply to
tracing, the second operand of TEST
BLOCK, or instructions that operate specifi-
cally on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is one
in the address-space-control element, locations
0-2047 and 4096-4607 in the address space are
usable the same as the other locations in the
space.

Suppression on Protection

Some instruction definitions specify that the opera-
tion is always suppressed if a protection exception
due to any type of protection is recognized. When
that specification is absent, the execution of an
instruction is always suppressed if a protection
exception due to access-list-controlled protection or
DAT protection is recognized, and it may be either
suppressed or terminated if a protection exception
due to low-address protection or key-controlled pro-
tection is recognized.

The suppression-on-protection function allows the
control program to locate the segment-table entry,
page-table entry, and, when enhanced DAT applies,
the region-table entry used in the translation of a vir-
tual address that caused a protection exception, in
order to determine if the exception was due to DAT
protection.3 This is necessary for the implementation
of the POSIX fork function (discussed in a program-
ming note). The function also allows the control pro-
gram to avoid locating the segment-table and page-
table entries if the address was not virtual or the
exception was due to access-list-controlled protec-
tion; when enhanced DAT applies, the control pro-
gram may also avoid locating the region-table entries

if the address was not virtual or the exception was
due to access-list-controlled protection.

During a program interruption due to a protection
exception, either a one or a zero is stored in bit posi-
tion 61 of real locations 168-175. The storing of a
one in bit position 61 indicates that:

e The unit of operation or instruction execution dur-
ing which the exception was recognized was
suppressed.

e If dynamic address translation (DAT) was on, as
indicated by the DAT-mode bit in the program old
PSW, the effective address that caused the
exception is one that was to be translated by
DAT. (The effective address is the address which
exists before any transformation by DAT or prefix-
ing.) Bit 61 is set to zero if DAT was on but the
effective address was not to be translated by DAT
because it is a real address. If DAT was off, the
protection exception cannot have been due to
DAT protection or access-list-controlled protec-
tion.

e Bit positions 0-51 of real locations 168-175 con-
tain bits 0-51 of the effective address that caused
the exception. If DAT was on, indicating that the
effective address was to be translated by DAT, bit
positions 62 and 63 of real locations 168-175,
and real location 160, contain the same informa-
tion as is stored during a program interruption
due to a page-translation exception — this infor-
mation identifies the address space containing
the protected address. Also, bit 60 of real loca-
tions 168-175 is zero if the protection exception
was not due to access-list-controlled protection
or is one if the exception was due to access-list-
controlled protection. A one in bit position 60
indicates that the exception was not due to DAT
protection. If DAT was off, the contents of bit
positions 60, 62, and 63 of real locations
168-175, and the contents of real location 160,
are unpredictable. The contents of bit positions
52-59 of real locations 168-175 are always
unpredictable.

Bit 61 being zero indicates that the operation was
either suppressed or terminated and that the con-
tents of the remainder of real locations 168-175, and
of real location 160 are unpredictable.

3. The suppression-on-protection function originated as the ESA/390 suppression-on-protection facility. Suppression for page pro-
tection (now called DAT protection) was new as part of that facility.

3-14

z/Architecture Principles of Operation

Bit 61 is set to one if the protection exception was
due to access-list-controlled protection or DAT pro-
tection. Bit 61 may be set to one if the protection
exception was due to low-address protection or key-
controlled protection.

If a protection-exception condition exists due to either
access-list-controlled protection or DAT protection
but also exists due to either low-address protection or
key-controlled protection, it is unpredictable whether
bit 61 is set to zero or one.

Programming Notes:

1. The suppression-on-protection function is useful
in performing the POSIX fork function, which
causes a duplicate address space to be created.
The following discussion pertains to when
enhanced DAT does not apply, or when
enhanced DAT applies but the format-control
(FC) bit in the segment-table entry is zero. When
forking occurs, the control program causes the
same page of different address spaces to map to
a single page frame of real storage as long as a
store in the page is not attempted. Then, when a
store is attempted in a particular address space,
the control program assigns a unique page frame
to the page in that address space and copies the
contents of the page to the new page frame. This
last action is sometimes called the copy-on-write
function. The control program sets the DAT-pro-
tection bit to one in the page-table entry for a
page in order to detect an attempt to store in the
page. The control program may initially set the
DAT-protection bit to one in a segment-table
entry to detect an attempt to store anywhere in
the specified segment.

When enhanced DAT applies, and the format-
control (FC) bit in the segment-table entry is one,
a similar technique may be used to map a single
segment frame of absolute storage.

2. Bit 61 being one in real locations 168-175 when
DAT was on indicates that the address that
caused a protection exception is virtual. This
indication allows programmed forms of access-
register translation and dynamic address transla-
tion to be performed to determine whether the
exception was due to DAT protection as opposed
to low-address or key-controlled protection.

3. The results of suppression on protection are
summarized in Figure 3-4.

Exception Conditions Presented Fields
LA or ALC If Bit 61 is One
Key- or Bits 62,

Cont. DAT | Eff. 63 and

Prot. |DAT| Prot. | Addr. | Bit 61 | Loc. 160 | Bit 60
No On | Yes | Log. 1 P 1A
Yes | On | Yes | Log. U1 P 1A
Yes Off No Log. U2 (VK] U3
Yes Off No R/A u2 (VK] U3
Yes On No Log. U2 P 0
Yes On No R/A OR - -

Explanation:

- Immaterial or not applicable.

OR Zero because effective address is real.

1A One if bit 61 is set to one because of access-
list-controlled protection; zero otherwise.

ALC Access-list-controlled.

LA Low-address.

Log. Logical.

P Predictable.

R/A Real or absolute

U1 Unpredictable because low-address or key-
controlled protection may be recognized
instead of access-list-controlled or DAT
protection.

U2 Unpredictable because bit 61 is only required to
be set to one for access-list-controlled or DAT
protection.

us Unpredictable because DAT is off.

Figure 3-4. Suppression-on-Protection Results

Enhanced Suppression on
Protection

When the enhanced suppression-on-protection func-
tion is installed, there are the following additional
constraints on what may occur during a protection
exception. These constraints take precedence over
any constraints defined in the original suppression-
on-protection function.

During a program interruption due to a protection
exception, bit 61 of real locations 168-175 indicates
the type of protection exception recognized. Bit 61 is
set to one if the protection exception was due to
access-list-controlled protection or DAT protection.
Bit 61 is set to zero if the protection exception was
due to low-address protection or key-controlled pro-
tection.

Chapter 3. Storage 3-15

If a protection-exception condition exists due to either
access-list-controlled protection or DAT protection
but also exists due to either low-address protection or
key-controlled protection, it is unpredictable which
exception is recognized and whether bit 61 is set to
zero or one. However, while it is unpredictable which
exception is recognized, the recognized exception
will produce consistent behavior as summarized in
Figure 3-5.

Exception Bit | Bit Bits 62, 63 and Bits
Type DAT | 61 | 60 Loc. 160 0-51
| LAP Any | O - - -
| KCP Any | 0 | - - -
| ALCP On 1 AS A
| DATP On 1 0 AS A
Explanation:
A Bits 0-51 of the effective address that caused the
exception.
ALCP Access-list-controlled protection.
AS Identifies the address space containing the
effective address that caused the exception.
DATP DAT protection.
KCP Key-controlled protection.
LAP Low-address protection.
- Undefined.

| Figure 3-5. Enhanced Suppression-on-Protection Results.

Reference Recording

Reference recording provides information for use in
selecting pages for replacement. Reference record-
ing uses the reference bit, bit 5 of the storage key.
The reference bit is set to one each time a location in
the corresponding storage block is referred to either
for fetching or for storing information, regardless of
whether DAT is on or off.

Reference recording is always active and takes place
for all storage accesses, including those made by
any CPU, any operator facility, or the channel sub-
system. It takes place for implicit accesses made by
the machine, such as those which are part of inter-
ruptions and I/O-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

3-16

z/Architecture Principles of Operation

e [INSERT STORAGE KEY EXTENDED

e RESET REFERENCE BIT EXTENDED (refer-
ence bit is set to zero)

e SET STORAGE KEY EXTENDED (reference bit
may be set to a specified value)

The record provided by the reference bit is substan-
tially accurate. The reference bit may be set to one by
fetching data or instructions that are neither desig-
nated nor used by the program, and, under certain
conditions, a reference may be made without the ref-
erence bit being set to one. Under certain unusual
circumstances, a reference bit may be set to zero by
other than explicit program action.

Change Recording

Change recording provides information as to which
pages have to be saved in auxiliary storage when
they are replaced in main storage. Change recording
uses the change bit, bit 6 of the storage key.

The change bit is set to one each time a store access
causes the contents of the corresponding storage
block to be changed, and either (a) enhanced DAT
does not apply, or (b) enhanced DAT applies, and
either of the following is true:

e The STE-format control in the segment-table
entry used by DAT is zero, and the change-
recording override (CO) in the page-table entry
used by DAT is zero.

e The STE-format control in the segment-table
entry used by DAT is one, and the change-
recording override (CO) in the segment-table
entry used by DAT is zero.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited when-
ever an access exception exists for that access,
or whenever an exception exists which is of
higher priority than the priority of an access
exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-controlled-protection
violation exists for that access.

Change recording is always active and takes place
for all store accesses to storage, including those
made by any CPU (except when suppressed by the
change-recording override, as described below), any
operator facility, or the channel subsystem. It takes
place for implicit references made by the machine,
such as those which are part of interruptions.

Change recording does not take place for the oper-
ands of the following instructions since they directly
modify a storage key without modifying a storage
location:

e RESET REFERENCE BIT EXTENDED
e SET STORAGE KEY EXTENDED (change bit
may be set to a specified value)

Change bits which have been changed from zeros to
ones are not necessarily restored to zeros on CPU
retry (see “CPU Retry” on page 11-2). See “Excep-
tions to Nullification and Suppression” on page 5-22
for a description of the handling of the change bit in
certain unusual situations.

Change-Recording Override

When enhanced DAT applies, and the virtual address
is translated by means of DAT-table entries, a
change-recording override (CO) is provided in bit 55
of both the segment-table entry and the page-table
entry.

When the STE-format control (FC), bit 53 of the seg-
ment-table entry is zero, the change-recording over-
ride in the page-table entry applies. When the
change-recording override in the PTE is zero, change
recording occurs for store operations to the 4K-byte
block. When the change-recording override is one, it
is unpredictable whether change recording occurs for
store operations to the 4K-byte block.

When the STE-format control is one, the change-
recording override in the STE applies. When the
change-recording override in the STE is zero, change
recording occurs for store operations to any of the
segment’s 256 4K-byte blocks. When the change-
recording override in the STE is one, it is unpredict-
able whether change recording occurs to any of the
segment’s 256 4K-byte blocks.

The change-recording override does not apply to real
or absolute addresses, or to a virtual address that is
translated by means of a real-space designation.

Programming Notes:

1. As stated in the section “Change Recording”,
above, a fundamental use of the change bit is
determining if the contents of a storage block
needs to be migrated to auxiliary storage prior to
replacing the block. If the program does not need
to migrate certain blocks of storage, for example,
blocks that are long-term “fixed” (also known as
“pinned”), the program may not need to rely on
the change bit for those blocks. In this case,
either or both of the following techniques may
improve CPU performance:

e Setting the change-recording override to one
to indicate that change recording is not
required for the blocks

* Presetting the change bit to one in the stor-
age key

2. See “Modification of Translation Tables” on
page 3-55 for restrictions on modifying the
change-recording override in the STE or PTE.

Prefixing

Prefixing provides the ability to assign the range of
real addresses 0-8191 to a different block in absolute
storage for each CPU, thus permitting more than one
CPU sharing main storage to operate concurrently
with a minimum of interference, especially in the pro-
cessing of interruptions.

Prefixing causes real addresses in the range 0-8191
to correspond one-for-one to the block of 8K-byte
absolute addresses (the prefix area) identified by the
value in bit positions 0-50 of the prefix register for the
CPU, and the block of real addresses identified by
that value in the prefix register to correspond one-for-
one to absolute addresses 0-8191. The remaining
real addresses are the same as the corresponding
absolute addresses. This transformation allows each
CPU to access all of main storage, including the first
8K bytes and the locations designated by the prefix
registers of other CPUs.

The relationship between real and absolute

addresses is graphically depicted in Figure 3-6 on
page 3-19.

Chapter 3. Storage 3-17

The prefix is a 51-bit quantity contained in bit posi-
tions 0-50 of the prefix register. The register has the
following format:

‘0O00OOO0OOO000000000000000000000‘

0 31

lo] Prefix Bits 33-50 N

3233 51 63

Bits 0-32 of the register are always all zeros. Bits
33-50 of the register can be set and inspected by the
privileged instructions SET PREFIX and STORE
PREFIX, respectively.

SET PREFIX sets bits 33-50 of the prefix register
with the value in bit positions 1-18 of a word in stor-
age, and it ignores the contents of bit positions 0 and
19-31 of the word. STORE PREFIX stores the value
in bit positions 33-50 of the prefix register in bit posi-
tions 1-18 of a word in storage, and it stores zeros in
bit positions 0 and 19-31 of the word.

When the contents of the prefix register are changed,
the change is effective for the next sequential instruc-
tion.

When prefixing is applied, the real address is trans-
formed into an absolute address by using one of the
following rules, depending on bits 0-50 of the real
address:

1. Bits 0-50 of the address, if all zeros, are replaced
with bits 0-50 of the prefix.

2. Bits 0-50 of the address, if equal to bits 0-50 of
the prefix, are replaced with zeros.

3. Bits 0-50 of the address, if not all zeros and not
equal to bits 0-50 of the prefix, remain
unchanged.

Only the address presented to storage is translated
by prefixing. The contents of the source of the
address remain unchanged.

The distinction between real and absolute addresses
is made even when the prefix register contains all
zeros, in which case a real address and its corre-
sponding absolute address are identical.

3-18

z/Architecture Principles of Operation

Address Spaces

An address space is a consecutive sequence of inte-
ger numbers (virtual addresses), together with the
specific transformation parameters which allow each
number to be associated with a byte location in stor-
age. The sequence starts at zero and proceeds left
to right.

When a virtual address is used by a CPU to access
main storage, it is first converted, by means of
dynamic address translation (DAT), to a real address,
and then, by means of prefixing, to an absolute
address. DAT may use from five to two levels of
tables (region first table, region second table, region
third table, segment table, and page table) as trans-
formation parameters. The designation (origin and
length) of the highest-level table for a specific
address space is called an address-space-control
element, and it is found for use by DAT in a control
register or as specified by an access register. Alter-
natively, the address-space-control element for an
address space may be a real-space designation,
which indicates that DAT is to translate the virtual
address simply by treating it as a real address and
without using any tables.

DAT uses, at different times, the address-space-con-
trol elements in different control registers or specified
by the access registers. The choice is determined by
the translation mode specified in the current PSW.
Four translation modes are available: primary-space
mode, secondary-space mode, access-register
mode, and home-space mode. Different address
spaces are addressable depending on the translation
mode.

At any instant when the CPU is in the primary-space
mode or secondary-space mode, the CPU can trans-
late virtual addresses belonging to two address
spaces — the primary address space and the sec-
ondary address space. At any instant when the CPU
is in the access-register mode, it can translate virtual
addresses of up to 16 address spaces — the primary
address space and up to 15 AR-specified address
spaces. At any instant when the CPU is in the home-
space mode, it can translate virtual addresses of the
home address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary

Prefixing Prefixing
T] r—- - — — — — — T T r—- - — — — — — T T
| | | |
+ No change »| 4 -
| | | |
T | ool | — < | No change Y +
pply
! Zeros 2 | |
| | | |
1 | | - | . | "
pply
| | zeros |1
T | | i | | T
1 | | _ | | 1
| | | |
T |/ No change | > B | | T
- | | B < | No chan l T
< ge
| | | |
T | | 7 | | T
8192 + — | | 8192 — A | | — T 8192
Apply . Apply
Prefix ° | Prefix
ol ! Lo J o1 Lo | LLlg
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B

(1) Real addresses in which bits 0-50 are equal to bits 0-50 of the prefix for this CPU (A or B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real locations 0-8191.
Figure 3-6. Relationship between Real and Absolute Addresses

address-space-control element (ASCE). Similarly,
the secondary address space consists of secondary
virtual addresses translated by means of the second-
ary ASCE, the AR-specified address spaces consist
of AR-specified virtual addresses translated by
means of AR-specified ASCEs, and the home
address space consists of home virtual addresses
translated by means of the home ASCE. The primary
and secondary ASCEs are in control registers 1 and
7, respectively. The AR-specified ASCEs are in con-
trol registers 1 and 7 and in table entries called ASN-
second-table entries. The home ASCE is in control
register 13.

Changing to Different Address Spaces

A program can cause different address spaces to be
addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change the
translation mode to the primary-space mode, sec-
ondary-space mode, access-register mode, or home-
space mode. However, SET ADDRESS SPACE
CONTROL and SET ADDRESS SPACE CONTROL
FAST can set the home-space mode only in the

supervisor state. The program can cause still other
address spaces to be addressable by using unprivi-
leged instructions to change the contents of the
access registers and by using semiprivileged or privi-
leged instructions to change the address-space-con-
trol elements in control registers 1 and 7. The
semiprivileged instructions are ones that cause link-
age from one address space to another and are the
BRANCH IN SUBSPACE GROUP, PROGRAM
CALL, PROGRAM RETURN, PROGRAM TRANS-
FER, PROGRAM TRANSFER WITH INSTANCE,
SET SECONDARY ASN, and SET SECONDARY
ASN WITH INSTANCE instructions. The privileged
instructions are the LOAD ADDRESS SPACE
PARAMETERS and LOAD CONTROL instructions.
Only LOAD CONTROL is available for changing the
home address-space-control element in control reg-
ister 13.

Address-Space Number

An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure in
main storage, an ASN-second-table entry containing

Chapter 3. Storage 3-19

information about the address space. If the ASN-sec-
ond-table entry is marked as valid, it contains the
address-space-control element that defines the
address space.

Under certain circumstances, the semiprivileged
instructions which place a new address-space-con-
trol element in control register 1 or 7 fetch this ele-
ment from an ASN-second-table entry. Some of
these instructions use an ASN-translation mecha-
nism which, given an ASN, can locate the designated
ASN-second-table entry.

The 16-bit unsigned binary format of the ASN per-
mits 64K unique ASNs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called the
primary ASN, is assigned bits 48-63 in control regis-
ter 4, and that for the secondary address space,
called the secondary ASN, is assigned bits 48-63 in
control register 3. Bits 48-63 of these registers have
the following formats:

Control Register 4

..‘ PASN ‘
48 63

Control Register 3

..‘ SASN ‘
48 63

A semiprivileged instruction that loads the primary or
secondary address-space-control element into the
appropriate control register also loads the corre-
sponding ASN into the appropriate control register.

The ASN for the home address space is not assigned
a position in a control register.

An access register containing the value 0 or 1 speci-
fies the primary or secondary address space,
respectively; and the address-space-control element
specified by the access register is in control register
1 or 7, respectively. An access register containing
any other value designates an entry in a table called
an access list. The designated access-list entry con-
tains the real address of an ASN-second-table entry
for the address space specified by the access regis-
ter. The address-space-control element specified by
the access register is in the ASN-second-table entry.
Translating the contents of an access register to

3-20

z/Architecture Principles of Operation

obtain an address-space-control element for use by
DAT does not involve the use of an ASN.

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note: Because an ASN-second-table
entry is located from an access-list entry by means of
its address instead of by means of its ASN, the ASN-
second-table entries designated by access-list
entries can be “pseudo” ASN-second-table entries,
that is, entries which are not in the two-level structure
able to be indexed by means of the ASN-translation
process. The number of unique pseudo ASN-sec-
ond-table entries can be greater than the number of
unique ASNs and is limited only by the amount of
storage available to be occupied by the ASN-second-
table entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

ASN-Second-Table-Entry
Sequence Number

The ASN-second-table entry contains an ASN-sec-
ond-table-entry sequence number (ASTESN) that
may be used to control storage references to the
related address space by means of an access regis-
ter or through use of the SET SECONDARY ASN,
SET SECONDARY ASN WITH INSTANCE, or LOAD
ADDRESS SPACE PARAMETERS instruction and
that may be used to control linkages to or back to the
address space by means of the BRANCH IN SUB-
SPACE GROUP, PROGRAM CALL, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, and PROGRAM RETURN instructions.
These uses of the ASTESN are described below.

When any instruction uses an access register to des-
ignate an access-list entry, which in turn designates
an ASN-second-table entry, to perform a storage ref-
erence to the address space specified by the ASN-
second-table entry, an ASTESN in the access-list
entry is compared to the ASTESN in the ASN-sec-
ond-table entry, and these ASTESNs must be equal;
otherwise, an ASTE-sequence exception is recog-
nized. This use of the ASTESN allows an access-list
entry to be made unusable if some authorization pol-
icy is changed or the designated ASN-second-table
entry is reassigned to specify a conceptually different
address space. The entry can be made unusable by
changing the ASTESN in the ASN-second-table

entry. The use is further described in “Revoking
Accessing Capability:” on page 5-48.

The ASTESN is used in connection with subspace
groups as follows:

* When BRANCH IN SUBSPACE GROUP uses an
access register to designate an access-list entry,
which in turn designates an ASN-second-table
entry, to transfer control to the subspace speci-
fied by the ASN-second-table entry, an ASTESN
in the access-list entry is compared to the
ASTESN in the ASN-second-table entry, and
these ASTESNs must be equal.

* When BRANCH IN SUBSPACE GROUP uses, in
an access register, an access-list-entry token
with the value 00000001 hex to transfer control to
the subspace specified by the subspace-ASN-
second-table-entry origin in the current dispatch-
able-unit control table (designated by control reg-
ister 2), a subspace-ASN-second-table-entry
sequence number (SSASTESN) in the dispatch-
able-unit control table is compared to the
ASTESN in the ASN-second-table entry for the
subspace, and the SSASTESN and ASTESN
must be equal.

* When LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, PROGRAM TRANSFER
WITH INSTANCE, SET SECONDARY ASN, or
SET SECONDARY ASN WITH INSTANCE sets
the primary address-space-control element in
control register 1 or the secondary address-
space-control element in control register 7 with
bits of the address-space-control element in the
ASN-second-table entry for a subspace, the
SSASTESN is compared to the ASTESN in the
ASN-second-table entry for the subspace, and
the SSASTESN and ASTESN must be equal.

Otherwise, in all of the above three cases, an ASTE-
sequence exception is recognized, except that LOAD
ADDRESS SPACE PARAMETERS sets condition
code 1 or 2 depending on whether the subspace is
the primary address space or the secondary address
space, respectively. These uses of the ASTESN
allow an access-list entry and the subspace-ASN-
second-table-entry origin in the current dispatchable-
unit control table to be made unusable when the
ASN-second-table entry either of them designates is
reassigned to specify a conceptually different

address space. The access-list entry and subspace-
ASN-second-table-entry origin can be made unus-
able by changing the ASTESN in the ASN-second-
table entry. The uses are further described in “Sub-
space Groups” on page 5-62.

Programming Note: The above operations use an
ASN-second-table-entry origin in either an access-
list entry or the dispatchable-unit control table; they
do not use an ASN. The designated ASN-second-
table entry is normally a pseudo ASN-second-table
entry (one not in the structure able to be indexed by
means of an ASN).

ASN-Second-Table-Entry Instance
Number and ASN Reuse

The ASN-and-LX-reuse facility may be installed on
the model. If this facility is installed, the ASN-second-
table entry contains an ASN-second-table-entry
instance number (ASTEIN), and certain new defini-
tions related to the ASTEIN and to a new linkage-
second-table-entry sequence number (LSTESN)
apply. The definitions related to the ASTEIN are sum-
marized below and also given in the appropriate sec-
tions of this publication.

e The ASN-and-LX-reuse facility includes the fol-
lowing new instructions:

— EXTRACT PRIMARY ASN AND INSTANCE

— EXTRACT SECONDARY ASN AND
INSTANCE

— PROGRAM TRANSFER WITH INSTANCE

— SET SECONDARY ASN WITH INSTANCE

* The facility also includes the following new con-
trol bits:

— The ASN-and-LX-reuse control (R), bit 44 of
control register 0

— The controlled-ASN bit (CA), bit 30 of word 1
of the ASN-second-table entry

— The reusable-ASN bit (RA), bit 31 of word 1
of the ASN-second-table entry

The three control bits are shown as follows:

Control Register 0

R

44

Chapter 3. Storage 3-21

Word 1 of ASN-Second-Table Entry

CR
AA

0 16 28 30 31

AX ATL

The facility also includes the primary ASTEIN in
bit positions 0-31 of control register 4 and the
secondary ASTEIN in bit positions 0-31 of con-
trol register 3. The primary ASTEIN is a copy of
the ASTEIN in the ASN-second-table entry for
the current primary address space specified by
the PASN in control register 4, and the second-
ary ASTEIN is a copy of the ASTEIN in the ASN-
second-table entry for the current secondary
address space specified by the SASN in control
register 3. The complete formats of control regis-
ters 3 and 4 are as follows:

Control Register 3

\ SASTEIN |
0 31
\ PKM SASN |
32 48 63
Control Register 4

\ PASTEIN |
0 31
\ AX PASN |

32 48 63

The following operations are performed if the
ASN-and-LX-reuse control, bit 44 of control reg-
ister 0, is one. When LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, or SET
SECONDARY ASN (1) sets the primary ASN in
control register 4 or the secondary ASN in con-
trol register 3 equal to a specified ASN and
(2) sets the primary address-space-control ele-
ment in control register 1 or the secondary
address-space-control element in control register
7, respectively, with the value of an address-
space-control element obtained from an ASN-
second-table entry located by means of ASN
translation of the specified ASN (or located, by
PROGRAM CALL only, by means of an ASTE
address), the instruction also sets the primary
ASTEIN in control register 4 or secondary
ASTEIN in control register 3, respectively, with
the value of the ASTEIN in the ASN-second-table
entry. However, PROGRAM TRANSFER and

3-22 z/Architecture Principles of Operation

SET SECONDARY ASN, which are performing
their space-switching operations, recognize a
special-operation exception if the reusable-ASN
bit, bit 31 of word 1, in the ASN-second-table
entry is one.

When the ASN-and-LX-reuse control is one and
any of the instructions named above or BRANCH
IN SUBSPACE GROUP sets the secondary ASN
and secondary address-space-control element
equal to the primary ASN (in the space-switching
stacking PROGRAM CALL operation, this may
be the old or the new primary ASN, as deter-
mined by a bit in the entry-table entry used) and
primary address-space-control element, respec-
tively, it also sets the secondary ASTEIN in con-
trol register 3 equal to the primary ASTEIN in
control register 4 (again, in the space-switching
stacking PROGRAM CALL case, this may be the
old or the new primary ASTEIN). Since this func-
tion does not include the accessing of an ASN-
second-table entry, it is not affected by a reus-
able-ASN bit.

PROGRAM TRANSFER WITH INSTANCE and
SET SECONDARY ASN WITH INSTANCE oper-
ate as described above except (1) independent
of the value of the ASN-and-LX-reuse control
(they always update the primary ASTEIN and
secondary ASTEIN as described above),
(2) without recognizing an exception due to the
reusable-ASN bit (they ignore the bit), and (3) in
their space-switching forms and the problem
state at the beginning of the operation, by recog-
nizing a special-operation exception if the con-
trolled-ASN bit, bit 30 of word 1, is one in the
ASN-second-table entry located by ASN transla-
tion. PROGRAM TRANSFER WITH INSTANCE
and SET SECONDARY ASN WITH INSTANCE
ignore the controlled-ASN bit if the CPU is in the
supervisor state at the beginning of the opera-
tion. (PROGRAM TRANSFER WITH INSTANCE
may switch the CPU from the supervisor state to
the problem state.)

PROGRAM TRANSFER WITH INSTANCE and
SET SECONDARY ASN WITH INSTANCE oper-
ate the same as PROGRAM TRANSFER and
SET SECONDARY ASN, respectively, except as
described in the preceding item and except as
follows.

Independent of the ASN-and-LX-reuse control
and the reusable-ASN bit, but not of the con-
trolled-ASN bit, each of PROGRAM TRANSFER

WITH INSTANCE with space switching and SET
SECONDARY ASN WITH INSTANCE with space
switching, after it has used the ASN in the R,
general register to locate an ASN-second-table
entry, compares an ASTEIN in bit positions 0-31
of general register R, to the ASTEIN in the entry.
The two ASTEINs must be equal; otherwise, an
ASTE-instance exception is recognized. This
comparison is performed in both the problem and
the supervisor state.

The following operations are performed if the
ASN-and-LX-reuse control is one. Each of stack-
ing PROGRAM CALL and BRANCH AND
STACK places the current primary ASTEIN in
bytes 180-183 of the linkage-stack state entry
that it forms, and it places the current secondary
ASTEIN, bits 0-31 of control register 3, in bytes
176-179 of the state entry.

Note: There is not a test of an ASTEIN related to
the ASN in the entry-table entry used by PRO-
GRAM CALL. There may be a test of a linkage-
second-table-entry sequence number related to
the linkage index used to locate the entry-table
entry, as summarized in “ASN-and-LX-Reuse
Control:” on page 5-27.

The following operations are performed if the
ASN-and-LX-reuse control is one. PROGRAM
RETURN with space switching, after it has used
the PASN in bytes 134 and 135 of the linkage-
stack program-call state entry to locate an ASN-
second-table entry (because that PASN is not
equal to the current PASN in control register 4),
compares the primary ASTEIN in bytes 180-183
of the state entry to the ASTEIN in the ASN-sec-
ond-table entry. PROGRAM RETURN to current
primary or with space switching, if it uses the
SASN in bytes 130 and 131 of the state entry to
locate an ASN-second-table entry (because that
SASN is not equal to the new PASN), compares
the secondary ASTEIN in bytes 176-179 of the
state entry to the ASTEIN in the ASN-second-
table entry. The one or two comparisons of
ASTEINs must each give equal results; other-
wise, an ASTE-instance exception is recognized.
These operations occur independent of the con-
trolled-ASN and reusable-ASN bits in the ASN-
second-table entry. PROGRAM RETURN does
not compare ASTEINs when it unstacks a branch
state entry.

The following format applies, and the operations
are performed, if the ASN-and-LX-reuse control

is one. The first operand of LOAD ADDRESS
SPACE PARAMETERS is two consecutive dou-
blewords having the following format:

First Operand of LOAD ADDRESS SPACE
PARAMETERS

| SASTEIN-d |
0 31

\ PKM-d SASN-d |
32 63

\ PASTEIN-d |
64 95

\ AX-d \ PASN-d |
96 112 127

If PASN translation is performed to locate an
ASN-second-table entry, PASTEIN-d is com-
pared to the ASTEIN in the ASN-second-table
entry, and they must be equal; otherwise, condi-
tion code 1 is set. If SASN translation is per-
formed to locate an ASN-second-table entry,
SASTEIN-d is compared to the ASTEIN in the
ASN-second-table entry, and they must be equal;
otherwise, condition code 2 is set. These opera-
tions are performed independent of the con-
trolled-ASN and reusable-ASN bits in the ASN-
second-table entries.

Independent of the ASN-and-LX-reuse control,
EXTRACT PRIMARY ASN AND INSTANCE
places the current primary ASN, bits 48-63 of
control register 4, in bit positions 48-63 of gen-
eral register R,; places the current primary
ASTEIN, bits 0-31 of control register 4, in bit
positions 0-31 of the general register; and places
zeros in bit positions 32-47 of the general regis-
ter. EXTRACT SECONDARY ASN AND
INSTANCE operates the same except that it
obtains the secondary ASN and secondary
ASTEIN in control register 3 for placement in the
general register.

Independent of the ASN-and-LX-reuse control, a
new code, code 5, of the EXTRACT STACKED
STATE instruction is valid. Code 5 causes the
saved secondary ASTEIN, bytes 176-179 of the
state entry, to be placed in bit positions 0-31 of
the R, general register and the saved primary
ASTEIN, bytes 180-183 of the state entry, to be
placed in bit positions 0-31 of general register
R, + 1. Bits 32-63 of the general registers remain
unchanged.

Chapter 3. Storage 3-23

These uses of the ASTEIN allow, in all cases except
one, an ASN associated with a particular ASTEIN to
be made unusable when the ASN and the ASN-sec-
ond-table entry it designates are reassigned to spec-
ify a conceptually different address space. The ASN-
and-ASTEIN combination can be made unusable by
(1) setting to one the reusable-ASN bit in the ASN-
second-table entry, which prevents the use of PRO-
GRAM TRANSFER and SET SECONDARY ASN,
and (2) changing the ASTEIN in the ASN-second-
table entry, which prevents the use of LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
TRANSFER WITH INSTANCE, @ PROGRAM
RETURN, and SET SECONDARY ASN WITH
INSTANCE. The uncovered case is that of an ASN
(and the corresponding ASN-second-table-entry
address) in an entry-table entry, and this case should
be handled by means of deletion, by the control pro-
gram, of the entry-table entry. However, if the control
program then reforms the entry-table entry (forms an
entry-table entry located by means of the same PC
number, used by PROGRAM CALL, as was the
deleted entry-table entry), a PC number that was
used to link to the conceptually deleted address
space will then be usable to link to a different (differ-
ent ASN) or conceptually different (same ASN but dif-
ferent contents) address space, and this error should
be avoided by using the linkage-second-table-entry
sequence number as described in “ASN-and-LX-
Reuse Control:” on page 5-27.

Programming Notes:

1. The reusable-ASN bit of the ASN-and-LX-reuse
facility provides reliability, availability, and ser-
viceability. Most importantly, it provides availabil-
ity since it allows ASNs to be reused. However it
does not provide system integrity since the
ASTEIN in the general register used by PRO-
GRAM TRANSFER WITH INSTANCE or SET
SECONDARY ASN WITH INSTANCE is provided
by the program. (The authorization index used by
those instructions normally provides system
integrity but may fail to do so if an ASN autho-
rized by an unchanged authorization index is
reused.) The controlled-ASN bit provides system
integrity since, if the CPU is in the problem state
at the beginning of the operation, PROGRAM
TRANSFER WITH INSTANCE and SET SEC-
ONDARY ASN WITH INSTANCE are unable to
proceed successfully after accessing an ASN-
second-table entry in which the controlled-ASN
bit is one. When the calling program and called
program are both executed in the problem state,

3-24 z/Architecture Principles of Operation

a program in an address space for which the
controlled-ASN bit is one should perform link-
ages to programs in other address spaces only
by means of stacking PROGRAM CALL. If that is
done, the return by means of PROGRAM
RETURN will always be successful, or will fail
appropriately when the ASN of the first address
space has been changed, because of the com-
parison to the saved primary ASTEIN in the link-
age-stack state entry.

. A program given control by a basic PROGRAM

CALL operation can use EXTRACT SECOND-
ARY ASN AND INSTANCE to obtain the ASTEIN
to be used by PROGRAM TRANSFER WITH
INSTANCE to return to the calling program or by
SET SECONDARY ASN WITH INSTANCE to
restore its secondary address space after a
change of that space. This EXTRACT SECOND-
ARY ASN AND INSTANCE instruction should be
executed while the original secondary space
remains continuously the secondary space; oth-
erwise, depending on actions by the control pro-
gram, EXTRACT SECONDARY ASN AND
INSTANCE may return an ASTEIN that allows
return to or use of a conceptually incorrect sec-
ondary space for which the ASTEIN has been
changed.

. A summary of the functions related to ASN reuse

is given in Figure 3-7 on page 3-25.

. There are certain programming errors, or situa-

tions that are not necessarily errors, that will not
be detected. These cases are described in the
definitions of the named instructions and are as
follows:

* In LOAD ADDRESS SPACE PARAMETERS:

— SASN translation is performed only
when, but not necessarily when, SASN-d
is not equal to PASN-d. When SASN-d is
equal to PASN-d, SASCE-new and SAS-
TEIN-new are set equal to PASCE-new
and PASTEIN-new, respectively. In this
case, there is not a test of whether SAS-
TEIN-d is equal to PASTEIN-d; SAS-
TEIN-d is ignored.

— When SASN-d is not equal to PASN-d
and is equal to SASN-old, bit 61 (force
ASN translation) is zero, and bit 63 (skip
SASN authorization) is one, SASN trans-
lation is not performed, and SASCE-old
and SASTEIN-old become SASCE-new

and SASTEIN-new, respectively. In this
case, there is not a test of whether SAS-
TEIN-d is equal to SASTEIN-old; SAS-
TEIN-d is ignored.

* In PROGRAM RETURN, if the new SASN is
equal to the new PASN, the SASCE in con-
trol register 7 is set equal to the new PASCE
in control register 1. The SASTEIN, PKM,
and SASN in control register 3 remain as
restored from the state entry. In this case,
there is not a test of whether the new SAS-
TEIN is equal to the new PASTEIN. (There
has already been a test of whether the
PASTEIN saved in the entry, which becomes
the new PASTEIN, equals the ASTEIN in the
new PASTE.)

* In the PROGRAM TRANSFER WITH
INSTANCE to-current-primary operation,
there is not a test of whether the current
PASTEIN equals the ASTEIN specified in bit
positions 0-31 of general register R;; the
ASTEIN is ignored.

e In the SET SECONDARY ASN WITH
INSTANCE to-current-primary operation,
there is not a test of whether the current
PASTEIN (to which the SASTEIN is set
equal) equals the ASTEIN specified in bit
positions 0-31 of general register R,; the
ASTEIN is ignored.

Required Bit
Value
Function R | CA | RA
PTI and SSAIR after accessing an -] 0| -

ASN-second-table entry, compare
ASTEIN in general register R, to
ASTEIN in the entry

Stacking PC and BAKR copy PASTEIN | 1 - -

and SASTEIN from control registers to
state entry

PR, after accessing an ASN-second- 1 - -

table entry, compares PASTEIN or
SASTEIN in the state entry to ASTEIN
in the ASN-second-table entry®

LASP, after accessing an ASN-second-| 1 - -

table entry, compares PASTEIN-d or
SASTEIN-d to ASTEIN in the entry”

EPAIR copies PASTEIN and PASN - - -

from control register 4 to general
register R,

ESAIR copies SASTEIN and SASN - - -

from control register 3 to general
register R,

ESTA code 5 copies PASTEIN and - - -

SASTEIN from state entry to general
registers

Required Bit
Value

Function R CA | RA

LASP, PC, and PR update PASTEIN or | 1 - -
SASTEIN in a control register after
accessing an ASN-second-table entry

PT and SSAR update PASTEIN or 1 - 0'
SASTEIN in a control register after
accessing an ASN-second-table entry

BSG, LASP, PC, PR, PT, and SSAR set | 1 - -
SASTEIN equal to PASTEIN

PTI and SSAIR update PASTEIN or - 0? -
SASTEIN in a control register after
accessing an ASN-second-table entry

PTIl and SSAIR set SASTEIN equal to - - -
PASTEIN

Explanation:

CA

R

RA

Bit is ignored or not applicable to the operation.

A special-operation exception is recognized if the bit
is one.

A special-operation exception is recognized if the bit
is one and the CPU is in the problem state at the
beginning of the operation.

An ASTE-instance exception is recognized if the
ASTEINs are not equal.

Condition code 1 (if PASTEIN comparison) or 2 (if
SASTEIN comparison) is set if the ASTEIN is not
equal.

Controlled-ASN bit, bit 30 of word 1 of ASN-second-
table entry.

ASN-and-LX-reuse control, bit 44 of control register
0.

Reusable-ASN bit, bit 31 of word 1 of ASN-second-
table entry.

Figure 3-7. Summary of Functions Related to ASN Reuse
(Part 1 of 2)

Figure 3-7. Summary of Functions Related to ASN Reuse

(Part 2 of 2)

Chapter 3. Storage 3-25

ASN Translation

ASN translation is the process of translating a 16-bit
ASN to locate the ASN-second-table entry desig-
nated by the ASN. ASN translation is performed as
part of PROGRAM TRANSFER with space switching
(PT-ss) PROGRAM TRANSFER WITH INSTANCE
with space switching (PTl-ss), SET SECONDARY
ASN with space switching (SSAR-ss), and SET SEC-
ONDARY ASN WITH INSTANCE with space switch-
ing (SSAIR-ss), and it may be performed as part of
LOAD ADDRESS SPACE PARAMETERS. For PT-ss
and PTI-ss the ASN which is translated replaces the
primary ASN in control register 4. For SSAR-ss and
SSAIR-ss, the ASN which is translated replaces the
secondary ASN in control register 3. These two
translation processes are called primary ASN trans-
lation and secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS SPACE
PARAMETERS. The ASN-translation process is the
same for both primary and secondary ASN transla-
tion; only the uses of the results of the process are
different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN translation
is performed if the secondary ASN restored by PRO-
GRAM RETURN (PR-ss or PROGRAM RETURN to
current primary) does not equal the primary ASN
restored by PROGRAM RETURN.

PROGRAM CALL with space switching (PC-ss) per-
forms the equivalent of primary ASN translation by
obtaining a primary ASN and the address of the cor-
responding ASN-second-table entry from an entry-
table entry.

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They are
used to locate the ASN-second-table entry and a
third table, the authority table, which is used when
ASN authorization is performed.

For the purposes of this translation, the 16-bit ASN is
considered to consist of two parts: the ASN-first-table
index (AFX) is the leftmost 10 bits of the ASN, and
the ASN-second-table index (ASX) is the six right-
most bits. The ASN has the following format:

3-26

z/Architecture Principles of Operation

ASN
\ AFX ASX

The AFX is used to select an entry from the ASN first
table. The origin of the ASN first table is designated
by the ASN-first-table origin in control register 14.
The ASN-first-table entry contains the origin of the
ASN second table. The ASX is used to select an
entry from the ASN second table.

As a result of primary ASN translation and during the
operation of PROGRAM CALL with space switching,
the address of the located ASN-second-table entry
(ASTE) is placed in control register 5 as the new pri-
mary-ASTE origin (PASTEO).

ASN-Translation Controls

ASN translation is controlled by the ASN-translation-
control bit and the ASN-first-table origin, both of
which reside in control register 14.

Control Register 14

1] AFTO \
44 45 63

ASN-Translation Control (T): Bit 44 of control reg-
ister 14 is the ASN-translation-control bit. This bit
provides a mechanism whereby the control program
can indicate whether ASN translation can occur while
a particular program is being executed, and also
whether the execution of PROGRAM CALL with
space switching is allowed. Bit 44 must be one to
allow completion of these instructions:

* LOAD ADDRESS SPACE PARAMETERS

* PROGRAM CALL with space switching

* PROGRAM RETURN with space switching or
when the restored SASN does not equal the
restored PASN

* PROGRAM TRANSFER with space switching

* PROGRAM TRANSFER WITH INSTANCE with
space switching

* SET SECONDARY ASN

* SET SECONDARY ASN WITH INSTANCE

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is examined in
both the problem and the supervisor states.

ASN-First-Table Origin (AFTO): Bits 45-63 of con-
trol register 14, with 12 zeros appended on the right,
form a 31-bit real address that designates the begin-
ning of the ASN first table.

ASN-Translation Tables

The ASN-translation process consists in a two-level
lookup using two tables: an ASN first table and an
ASN second table. These tables reside in real stor-
age.

T RSD Part 2 1
\ RSTKO (Continued) CEEEE |R=1
96 116 118 123 127

| ALD :

] ALO | AL |
128 153 159

| ASTESN |
160 191
If ASN-and-LX Reuse Is Not Enabled

i LTD]
. . v LTO LTL
ASN-First-Table Entries ‘19:‘;_ 217 223
An entry in the ASN first table has the following for- If ASN-and-LX Reuse Is Enabled
mat:
0 50 | LFTD .
— — R LFTO LFTL |
192 216 223

The fields in the entry are allocated as follows:

AFX-Invalid Bit (I): Bit 0 controls whether the ASN
second table associated with the ASN-first-table
entry is available. When bit 0 is zero, ASN translation
proceeds by using the designated ASN second table.
When the bit is one, the ASN translation cannot con-
tinue.

ASN-Second-Table Origin (ASTO): Bits 1-25, with
six zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the ASN second table.

ASN-Second-Table Entries

The ASN-second-table entry has a length of 64
bytes, with only the first 48 bytes currently in use.
Bytes 0-47 of the entry have the following format:

[ATO Iz
01 30 31

AX ATL g 2
32 48 60 62 63

——— ASCE (RTD, STD, or RSD) Part 1 ———

| RTO, STO, or RSTKO |
64 95

—————RTDorSTDPart2 —
\ RTO/STO (Continued) | lgP|s)X[R| [oT]TL|R=0

96 116 118 122 124 127

‘ Available for programming |
224 255

‘ Available for programming |
256 287

‘ Available for programming |
288 319

320 351

\ ASTEIN |
352 383

The fields in bytes 0-47 of the ASN-second-table
entry are allocated as follows. Only the fields that are
used in or as a result of ASN translation or PRO-
GRAM CALL with space switching are described in
detail.

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASN-second-
table entry is available. When bit 0 is zero, ASN
translation proceeds. When the bit is one, the ASN
translation cannot continue.

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Base-Space Bit (B): Bit 31 specifies, when one,

that the address space associated with the ASN-sec-
ond-table entry is the base space of a subspace

Chapter 3. Storage 3-27

group. Bit 31 is further described in “Subspace-
Group ASN-Second-Table Entries” on page 5-64.

Authorization Index (AX): Bits 32-47 are used in
ASN authorization as an index to locate the authority
bits in the authority table. The AX field is used as a
result of primary ASN translation by PROGRAM
RETURN, PROGRAM TRANSFER, PROGRAM
TRANSFER WITH INSTANCE, and, possibly, LOAD
ADDRESS SPACE PARAMETERS. It is also used by
PROGRAM CALL with space switching. The AX field
is ignored after secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four bytes,
thus making the authority table variable in multiples
of 16 entries. The length of the authority table, in
units of four bytes, is one more than the ATL value.
The contents of the ATL field are used to establish
whether the entry designated by a particular AX falls
within the authority table.

Controlled-ASN Bit (CA): PROGRAM TRANS-
FER WITH INSTANCE with space switching and SET
SECONDARY ASN WITH INSTANCE with space
switching recognize a special-operation exception if
bit 62 is one and the CPU is in the problem state at
the beginning of the operation. Bit 62 is ignored in the
supervisor state.

Reusable-ASN Bit (RA): If the ASN-and-LX-reuse
facility is installed and is enabled by a one value of
the ASN-and-LX-reuse control, bit 44 of control regis-
ter 0, PROGRAM TRANSFER with space switching
and SET SECONDARY ASN with space switching
recognize a special-operation exception if bit 63 is
one in the problem or the supervisor state.

Address-Space-Control Element (ASCE): Bits

64-127 are an eight-byte address-space-control ele-
ment (ASCE) that may be a region-table designation
(RTD), a segment-table designation (STD), or a real-
space designation (RSD). (The term “region-table
designation” is used to mean a region-first-table des-
ignation, region-second-table designation, or region-
third-table designation.) The ASCE field is used as a
result of ASN translation or in PROGRAM CALL with
space switching to replace the primary ASCE
(PASCE) or the secondary ASCE (SASCE). For
PROGRAM CALL with space switching, the ASCE
field replaces the PASCE, bits 0-63 of control
register 1. For SET SECONDARY ASN, and SET
SECONDARY ASN WITH INSTANCE, the ASCE
field replaces the SASCE, bits 0-63 of control

3-28

z/Architecture Principles of Operation

register 7. Each of these actions may occur indepen-
dently for LOAD ADDRESS SPACE PARAMETERS.
For PROGRAM TRANSFER, and PROGRAM
TRANSFER WITH INSTANCE, the ASCE field
replaces both the PASCE and the SASCE. For PRO-
GRAM RETURN, as a result of primary ASN transla-
tion, the ASCE field replaces the PASCE, and, as a
result of secondary ASN translation, the ASCE field
replaces the SASCE. The contents of the entire
ASCE field are placed in the appropriate control reg-
isters without being inspected for validity.

The subspace-group-control bit (G), bit 118 of the
ASCE field, indicates, when one, that the ASCE
specifies an address space that is the base space or
a subspace of a subspace group. The bit is further
described in “Subspace-Group ASN-Second-Table
Entries” on page 5-64.

Bit 121 (X) of the ASCE field is the space-switch-
event-control bit. When, in the space-switching oper-
ations of PROGRAM CALL, PROGRAM RETURN,
and PROGRAM TRANSFER, and PROGRAM
TRANSFER WITH INSTANCE, this bit is one in con-
trol register 1 either before or after the execution of
the instruction, a program interruption for a space-
switch event occurs after the execution of the instruc-
tion is completed. A space-switch-event program
interruption also occurs after the completion of a SET
ADDRESS SPACE CONTROL, SET ADDRESS
SPACE CONTROL FAST, or RESUME PROGRAM
instruction that changes the translation mode either
to or from the home-space mode when this bit is one
in either control register 1 or control register 13.
When, in LOAD ADDRESS SPACE PARAMETERS,
this bit is one during primary ASN translation, this
fact is indicated by the condition code.

The real-space-control bit (R), bit 122 of the ASCE
field, indicates, when zero, that the ASCE is a region-
table or segment-table designation or, when one, that
the ASCE is a real-space designation.

When bit 122 is zero, the designation-type-control
bits (DT), bits 124 and 125 of the ASCE field, indicate
the designation type of the ASCE. A value 11, 10, 01,
or 00 binary of bits 124 and 125 indicates a region-
first-table designation, region-second-table designa-
tion, region-third-table designation, or segment-table
designation, respectively.

The other fields in the ASCE (RTO, STO, P, S, TL,
and RSTKO) are described in “Control Register 1” on
page 3-37.

Access-List Designation (ALD): The access-list-
designation (ALD) field is described in “ASN-Second-
Table Entries” on page 5-54.

ASN-Second-Table-Entry = Sequence = Number
(ASTESN): The ASTE-sequence-number
(ASTESN) field is described in “ASN-Second-Table
Entries” on page 5-54.

Linkage-Table Designation (LTD) or Linkage-
First-Table Designation (LFTD): The linkage-
table-designation (LTD) or linkage-first-table designa-
tion (LFTD) field in the ASN-second-table entry is
described in “PC-Number Translation Control” on
page 5-31.

ASN-Second-Table-Entry Instance Number
(ASTEIN): When the ASN-and-LX-reuse facility is
installed and is enabled by a one value of the ASN-
and-LX-reuse control in control register 0, bits
352-383 are compared to an ASTEIN specified along
with an ASN for use by PROGRAM RETURN or
LOAD ADDRESS SPACE PARAMETERS. The
ASTEINs must be equal; otherwise, an ASTE-
instance exception is recognized by PROGRAM
RETURN or condition code 1 or 2 is set by LOAD
ADDRESS SPACE PARAMETERS. This compari-
son and the exception result also occur in the opera-
tions of PROGRAM TRANSFER WITH INSTANCE
and SET SECONDARY ASN WITH INSTANCE
except independent of the ASN-and-LX-reuse con-
trol.

Bits 224-319 in the ASN-second-table entry are avail-
able for use by programming.

Programming Note: All unused fields in the ASN-
second-table entry, including the unused fields in
bytes 0-31 and all of bytes 40-43 and 48-63 should
be set to zeros. These fields are reserved for future
extensions, and programs which place nonzero val-
ues in these fields may not operate compatibly on
future machines.

ASN-Translation Process

This section describes the ASN-translation process
as it is performed during the execution of the space-
switching forms of PROGRAM RETURN, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, SET SECONDARY ASN, and SET SEC-
ONDARY ASN WITH INSTANCE, and also in PRO-
GRAM RETURN when the restored secondary ASN

does not equal the restored primary ASN. ASN trans-
lation for LOAD ADDRESS SPACE PARAMETERS is
the same except that AFX-translation and ASX-trans-
lation exceptions do not occur; such conditions are
instead indicated by the condition code. Translation
of an ASN is performed by means of two tables, an
ASN first table and an ASN second table, both of
which reside in main storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the ASN
second table to be used.

The ASN second index is used to select an entry
from the ASN second table.

If the | bit is one in either the ASN-first-table entry or
the ASN-second-table entry, the entry is invalid, and
the ASN-translation process cannot be completed.
An AFX-translation exception or ASX-translation
exception is recognized.

Whenever access to main storage is made during the
ASN-translation process for the purpose of fetching
an entry from an ASN first table or ASN second table,
key-controlled protection does not apply.

The ASN-translation process is shown in Figure 3-8
on page 3-30.

ASN-First-Table Lookup

The AFX portion of the ASN, in conjunction with the
ASN-first-table origin, is used to select an entry from
the ASN first table.

The 31-bit real address of the ASN-first-table entry is
obtained by appending 12 zeros on the right to the
AFT origin contained in bit positions 45-63 of control
register 14 and adding the AFX portion with two
rightmost and 19 leftmost zeros appended. This
addition cannot cause a carry into bit position 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit, 31-bit,
or 64-bit addressing mode.

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address which is generated for fetching
the ASN-first-table entry designates a location which
is not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Chapter 3. Storage 3-29

Control Register 14 ASN

T| AFTO
(x4096) (x4)

—

+ ¢

ASX
(x64)

ASN First Table

ASTO

(x64)

+ ¢

ASN Second Table

ATO B| AX |ATL|A|a| ASCE ALO | ALL

ASTESN |LTD or LFTD ASTEIN

R Address s real

Figure 3-8. ASN Translation

Bit O of the four-byte AFT entry specifies whether the
corresponding AST is available. If this bit is one, an
AFX-translation exception is recognized. The entry
fetched from the AFT is used to access the AST.

ASN-Second-Table Lookup

The ASX portion of the ASN, in conjunction with the
ASN-second-table origin contained in the ASN-first-
table entry, is used to select an entry from the ASN
second table.

The 31-bit real address of the ASN-second-table
entry is obtained by appending six zeros on the right
to bits 1-25 of the ASN-first-table entry and adding
the ASX with six rightmost and 19 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may be
recognized, or the carry may be ignored, causing the
table to wrap from 2°' - 1 to zero. The 31-bit address

3-30

z/Architecture Principles of Operation

is formed and used regardless of whether the current
PSW specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

The fetch of the 64 bytes of the ASN-second-table
entry appears to be word concurrent as observed by
other CPUs, with the leftmost word fetched first. The
order in which the remaining 15 words are fetched is
unpredictable. The fetch access is not subject to pro-
tection. When the storage address which is gener-
ated for fetching the ASN-second-table entry
designates a location which is not available in the
configuration, an addressing exception is recognized,
and the operation is suppressed.

Bit 0 of the ASN-second-table entry specifies
whether the address space is accessible. If this bit is
one, an ASX-translation exception is recognized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered during the
ASN-translation process are collectively referred to
as ASN-translation exceptions. A list of these excep-
tions and their priorities is given in Chapter 6, “Inter-
ruptions”.

ASN Authorization

ASN authorization is the process of testing whether
the program associated with the current authorization
index is permitted to establish a particular address
space. The ASN authorization is performed as part of
PROGRAM TRANSFER with space switching (PT-
ss) and SET SECONDARY ASN with space switch-
ing (SSAR-ss) and may be performed as part of
LOAD ADDRESS SPACE PARAMETERS. ASN
authorization is performed after the ASN-translation
process for these instructions.

ASN authorization is also performed as part of PRO-
GRAM RETURN when the restored secondary ASN
does not equal the restored primary ASN. ASN
authorization of the restored secondary ASN is per-
formed after ASN translation of the restored second-
ary ASN.

When performed as part of PT-ss, the ASN authori-
zation tests whether the ASN can be established as
the primary ASN and is called primary-ASN authori-
zation. When performed as part of LOAD ADDRESS
SPACE PARAMETERS, PROGRAM RETURN, or
SSAR-ss, the ASN authorization tests whether the
ASN can be established as the secondary ASN and
is called secondary-ASN authorization.

The ASN authorization is performed by means of an
authority table in real storage which is designated by
the authority-table-origin and authority-table-length
fields in the ASN-second-table entry.

ASN-Authorization Controls

ASN authorization uses the authority-table origin and
the authority-table length from the ASN-second-table
entry, together with an authorization index.

Control Register 4

For PT-ss and SSAR-ss, the current contents of con-
trol register 4 include the authorization index. For
LOAD ADDRESS SPACE PARAMETERS and PRO-
GRAM RETURN, the value which will become the
new contents of control register 4 is used. The regis-
ter has the following format:

] AX ..
32 48

Authorization Index (AX): Bits 32-47 of control
register 4 are used as an index to locate the authority
bits in the authority table.

ASN-Second-Table Entry

The ASN-second-table entry which is fetched as part
of the ASN translation process contains information
which is used to designate the authority table. An
entry in the ASN second table has the following for-
mat:

| ATO | g
01 30 31

| T
32 48 60 64

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four bytes,
thus making the authority table variable in multiples
of 16 entries. The length of the authority table, in
units of four bytes, is equal to one more than the ATL
value. The contents of the length field are used to
establish whether the entry designated by the autho-
rization index falls within the authority table.

Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

The fields are allocated as follows:

0 7

Chapter 3. Storage 3-31

Primary Authority (P): The left bit of an authority-
table entry controls whether the program with the
authorization index corresponding to the entry is per-
mitted to establish the address space as a primary
address space. If the P bit is one, the establishment
is permitted. If the P bit is zero, the establishment is
not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is permit-
ted to establish the address space as a secondary
address space. If the S bit is one, the establishment
is permitted. If the S bit is zero, the establishment is
not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
“Authorizing the Use of the Access-List Entry” on
page 5-59.

ASN-Authorization Process

This section describes the ASN-authorization pro-
cess as it is performed during the execution of PRO-
GRAM TRANSFER with space switching and SET
SECONDARY ASN with space switching. For these
two instructions, the ASN-authorization process is
performed by using the authorization index currently
in control register 4. Secondary authorization for
PROGRAM RETURN, when the restored secondary
ASN does not equal the restored primary ASN, and
for LOAD ADDRESS SPACE PARAMETERS is the
same, except that the value which will become the
new contents of control register 4 is used for the
authorization index. Also, for LOAD ADDRESS
SPACE PARAMETERS, a secondary-authority
exception does not occur. Instead, such a condition
is indicated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with the
authority-table origin and length from the AST entry,
to select an authority-table entry. The entry is
fetched, and either the primary- or the secondary-
authority bit is examined, depending on whether the
primary- or secondary-ASN-authorization process is
being performed. The ASN-authorization process is
shown in Figure 3-9.

3-32

z/Architecture Principles of Operation

Authority-Table Lookup

The authorization index, in conjunction with the
authority-table origin contained in the ASN-second-
table entry, is used to select an entry from the author-
ity table.

The authorization index is contained in bit positions
32-47 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the authority
table (ATO), and bit positions 48-59 contain the
length of the authority table (ATL).

The 31-bit real address of a byte in the authority table
is obtained by appending two zeros on the right to
the authority-table origin and adding the 14 leftmost
bits of the authorization index with 17 zeros
appended on the left. When a carry into bit position 0
occurs during the addition, an addressing exception
may be recognized, or the carry may be ignored,
causing the table to wrap from 2% - 1 to zero. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit, 31-bit,
or 64-bit addressing mode.

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE PARAME-
TERS, when the authority-table length is exceeded,
condition code 2 is set.

The fetch access to the byte in the authority table is
not subject to protection. When the storage address
which is generated for fetching the byte designates a
location which is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

The byte contains four authority-table entries of two
bits each. The rightmost two bits of the authorization
index, bits 46 and 47 of control register 4, are used to
select one of the four entries. The left or right bit of
the entry is then tested, depending on whether the
authorization test is for a primary ASN or a second-
ary ASN. The following table shows the bit which is
selected from the byte as a function of bits 46 and 47
of the authorization index and the instruction PT-ss,

Control Register 4

AX

(x1/4)

ASN Second Table

ASN-Second-Table Entry

| ATO B AX |ATL g E ASCE ALO | ALL | ASTESN [LTD orLFTD ASTEIN
II / II
(x4)
v
[——
Authority
Table
For primary ASN authorization (PT-ss only):
Primary-authority exception if P bit zero or table length exceeded.
For secondary ASN authorization (PR and SSAR-ss only):
R pls Secondary-authority exception if S bit zero or table length exceeded.

For secondary ASN authorization (LASP only):

R Address is real

Figure 3-9. ASN Authorization

SSAR-ss, PROGRAM RETURN, or
ADDRESS SPACE PARAMETERS.

LOAD

Authorization-Index | Bit Selected from Authority-
Bits Table Byte for Test
S Bit
P Bit (SSAR-ss,
46 47 (PT-ss) PR, or LASP)
0 0 0 1
0 1 2 3
1 0 4 5
1 1 6 7

If the selected bit is one, the ASN is authorized, and
the appropriate fields in the AST entry are loaded
into the appropriate control registers. If the selected
bit is zero, the ASN is not authorized, and a primary-
authority exception is recognized for PT-ss or a sec-
ondary-authority exception is recognized for SSAR-
ss or PROGRAM RETURN. For LOAD ADDRESS

Set condition code 2 if S bit zero or table length exceeded.

SPACE PARAMETERS, when the ASN is not autho-
rized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered during the
primary- and secondary-ASN-authorization pro-
cesses and their priorities are described in the defini-
tions of the instructions in which ASN authorization is
performed.

Programming Note: The primary- and secondary-
authority exceptions cause nullification in order to
permit dynamic modification of the authority table.
Thus, when an address space is created or
“swapped in,” the authority table can first be set to all
zeros and the appropriate authority bits set to one
only when required.

Chapter 3. Storage 3-33

Dynamic Address Translation

Dynamic address translation (DAT) provides the abil-
ity to interrupt the execution of a program at an arbi-
trary moment, record it and its data in auxiliary
storage, such as a direct-access storage device, and
at a later time return the program and the data to dif-
ferent main-storage locations for resumption of exe-
cution. The transfer of the program and its data
between main and auxiliary storage may be per-
formed piecemeal, and the return of the information
to main storage may take place in response to an
attempt by the CPU to access it at the time it is
needed for execution. These functions may be per-
formed without change or inspection of the program
and its data, do not require any explicit programming
convention for the relocated program, and do not dis-
turb the execution of the program except for the time
delay involved.

With appropriate support by an operating system, the
dynamic-address-translation facility may be used to
provide to a user a system wherein storage appears
to be larger than the main storage which is available
in the configuration. This apparent main storage is
referred to as virtual storage, and the addresses
used to designate locations in the virtual storage are
referred to as virtual addresses. The virtual storage
of a user may far exceed the size of the main storage
which is available in the configuration and normally is
maintained in auxiliary storage. The virtual storage is
considered to be composed of blocks of addresses,
called pages. Only the most recently referred-to
pages of the virtual storage are assigned to occupy
blocks of physical main storage. As the user refers to
pages of virtual storage that do not appear in main
storage, they are brought in to replace pages in main
storage that are less likely to be needed. The swap-
ping of pages of storage may be performed by the
operating system without the user’s knowledge.

The sequence of virtual addresses associated with a
virtual storage is called an address space. With
appropriate support by an operating system, the
dynamic-address-translation facility may be used to
provide a number of address spaces. These address
spaces may be used to provide degrees of isolation
between users. Such support can consist of a com-
pletely different address space for each user, thus
providing complete isolation, or a shared area may
be provided by mapping a portion of each address
space to a single common storage area. Also,

3-34

z/Architecture Principles of Operation

instructions are provided which permit a semiprivi-
leged program to access more than one such
address space. Dynamic address translation pro-
vides for the translation of virtual addresses from
multiple different address spaces without requiring
that the translation parameters in the control regis-
ters be changed. These address spaces are called
the primary address space, secondary address
space, and AR-specified address spaces. A privi-
leged program can also cause the home address
space to be accessed.

In the process of replacing blocks of main storage by
new information from an external medium, it must be
determined which block to replace and whether the
block being replaced should be recorded and pre-
served in auxiliary storage. To aid in this decision
process, a reference bit and a change bit are associ-
ated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs, IDAWs, and MIDAWSs in I/O opera-
tions. The CCW-indirect-data-addressing facility and
modified-CCW-indirect-data-addressing facilities are
provided to aid 1/0O operations in a virtual-storage
environment.

Address computation can be carried out in the 24-bit,
31-bit, or 64-bit addressing mode. When address
computation is performed in the 24-bit or 31-bit
addressing mode, 40 or 33 zeros, respectively, are
appended on the left to form a 64-bit address. There-
fore, the resultant logical address is always 64 bits in
length. The real or absolute address that is formed by
dynamic address translation, and the absolute
address that is then formed by prefixing, are always
64 bits in length.

Dynamic address translation is the process of trans-
lating a virtual address during a storage reference
into the corresponding real or absolute address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These addresses
are translated by means of the primary, the second-
ary, an AR-specified, or the home address-space-
control element, respectively. After selection of the
appropriate address-space-control element, the
translation process is the same for all of the four
types of virtual address. An address-space-control
element may be a segment-table designation speci-
fying a 2G-byte address space, a region-table desig-

nation specifying a 4T-byte, 8P-byte, or 16E-byte
space, or a real-space designation specifying a 16E-
byte space. (The letters K, M, G, T, P, and E repre-
sent kilo, 2'°, mega, 2%°, giga, 2%, tera, 2%, peta, 2°°,
and exa, 2%, respectively.) A segment-table designa-
tion or region-table designation causes translation to
be performed by means of tables established by the
operating system in real or absolute storage. A real-
space designation causes the virtual address simply
to be treated as a real address, without the use of
tables in storage.

In the process of translation when using a segment-
table designation or a region-table designation, three
types of units of information are recognized —
regions, segments, and pages. A region is a block of
sequential virtual addresses spanning 2G bytes and
beginning at a 2G-byte boundary. A segment is a
block of sequential virtual addresses spanning 1M
bytes and beginning at a 1M-byte boundary. A page
is a block of sequential virtual addresses spanning
4K bytes and beginning at a 4K-byte boundary.

The virtual address, accordingly, is divided into four
principal fields. Bits 0-32 are called the region index
(RX), bits 33-43 are called the segment index (SX),
bits 44-51 are called the page index (PX), and bits
52-63 are called the byte index (BX). The virtual
address has the following format:

RX \ SX

As determined by its address-space-control element,
a virtual address space may be a 2G-byte space
consisting of one region, or it may be up to a 16E-
byte space consisting of up to 8G regions. The RX
part of a virtual address applying to a 2G-byte
address space must be all zeros; otherwise, an
exception is recognized.

The RX part of a virtual address is itself divided into
three fields. Bits 0-10 are called the region first index
(RFX), bits 11-21 are called the region second index
(RSX), and bits 22-32 are called the region third
index (RTX). Bits 0-32 of the virtual address have the
following format:

\ RFX | RSX \ RTX \
0 1 22 33

A virtual address in which the RTX is the leftmost sig-
nificant part (a 42-bit address) is capable of address-

ing 4T bytes (2K regions), one in which the RSX is
the leftmost significant part (a 53-bit address) is
capable of addressing 8P bytes (4M regions), and
one in which the RFX is the leftmost significant part
(a 64-bit address) is capable of addressing 16E bytes
(8G regions).

A virtual address in which the RX is always zero can
be translated into real addresses by means of one or
two translation tables, as follows:

* When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format con-
trol, bit 53 of the segment-table entry, is zero, the
virtual address can be translated by means of a
segment table and a page table.

* When enhanced DAT applies and the STE-for-
mat control of the segment-table entry is one, the
virtual address can be translated by means of a
segment table only.

If the RX may be nonzero, from one to three addi-
tional translation tables are required, as follows. If the
RFX may be nonzero, a region first table, region sec-
ond table, and region third table are required. If the
RFX is always zero but the RSX may be nonzero, a
region second table and region third table are
required. If the RFX and RSX are always zero but the
RTX may be nonzero, a region third table is required.
An exception is recognized if the address-space-con-
trol element for an address space does not designate
the highest level of table (beginning with the region
first table and continuing downward to the segment
table) needed to translate a reference to the address
space.

A region first table, region second table, or region
third table is sometimes referred to simply as a
region table. Similarly, a region-first-table designa-
tion, region-second-table designation, or region-third-
table designation is sometimes referred to as a
region-table designation.

The region, segment, and, when applicable, page
tables reflect the current assignment of real or abso-
lute storage.

When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format control, bit
53 of the segment-table entry, is zero, the assign-
ment of real storage occurs in units of pages, the real
locations being assigned contiguously within a page.
The pages need not be adjacent in real storage even

Chapter 3. Storage 3-35

though assigned to a set of sequential virtual
addresses.

Similarly, when enhanced DAT applies and the STE-
format control of the segment-table entry is one, the
assignment of real storage occurs in units of seg-
ments, the absolute locations being assigned contig-
uously within a segment. The segments need not be
adjacent in absolute storage even though assigned
to a set of sequential virtual addresses.

To improve performance, translation normally is per-
formed by means of table copies maintained in a
special buffer called the translation-lookaside buffer
(TLB). The TLB may also contain entries that provide
the virtual-equals-real translation specified by a real-
space designation.

Translation Control

Address translation is controlled by three bits in the
PSW and by a set of bits referred to as the translation
parameters. The translation parameters are in control
registers 0, 1, 7, and 13. Additional controls are
located in the translation tables.

Additional controls are provided as described in
Chapter 5, “Program Execution” These controls
determine whether the contents of each access reg-
ister can be used to obtain an address-space-control
element for use by DAT.

Translation Modes

The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit, and
bits 16 and 17, the address-space-control bits. When
the DAT-mode bit is zero, then DAT is off, and the
CPU is in the real mode. When the DAT-mode bit is
one, then DAT is on, and the CPU is in the translation
mode designated by the address-space-control bits:
00 designates the primary-space mode, 01 desig-
nates the access-register mode, 10 designates the
secondary-space mode, and 11 designates the
home-space mode. The various modes are shown in
Figure 3-10, along with the handling of addresses in
each mode.

Control Register 0
Bit 37 is provided in control register 0 for use in con-
trolling dynamic address translation. When the

3-36

z/Architecture Principles of Operation

PSW Bit Handling of Addresses
Instruction Logical
5 (16|17 | DAT Mode Addresses | Addresses
0|0 0| Off |Real mode Real Real
00 1] Off |Real mode Real Real
0[1]0]| Off |Real mode Real Real
0| 1] 1] Off |Real mode Real Real
1100 On |Primary-space Primary Primary
mode virtual virtual
1101 On |Access-register Primary AR-specified
mode virtual virtual
1] 10| On [Secondary-space |Primary Secondary
mode virtual virtual
11 1] 1| On |Home-space mode [Home Home
virtual virtual

Figure 3-10. Translation Modes

enhanced-DAT facility is installed, bit 40 is also pro-
vided for use in controlling dynamic-address transla-
tion. The bit assignments are as follows:

S| | |E
S| | D
37 4

Secondary-Space Control (§S): Bit 37 of control
register 0 is the secondary-space-control bit. When
this bit is zero and execution of MOVE TO PRIMARY,
MOVE TO SECONDARY, or SET ADDRESS SPACE
CONTROL is attempted, a special-operation excep-
tion is recognized. When this bit is one, it indicates
that the region table or segment table designated by
the secondary address-space-control element is
attached when the CPU is in the primary-space
mode.

Enhanced-DAT-Enablement Control (ED): When
the enhanced-DAT facility is installed, bit 40 of control
register 0 is the enhanced-DAT-enablement control.
When this bit is zero, dynamic address translation
proceeds as though the enhanced-DAT facility was
not installed. When the bit is one, the following condi-
tions apply:

* The DAT-protection bit is defined in bit position 54
of each region-table entry.

e The STE-format control is defined in bit position
53 of the segment-table entry. When the STE-for-
mat control is zero, the following apply:

— Bits 0-52 of the segment-table entry are
used to locate the page table (as occurs
when the enhanced-DAT facility is not
installed or enabled)

— Bit 53 of the page-table entry contains the
change-recording override for the page.

When the STE-format control is one, the follow-
ing apply:

— Bits 0-43 of the segment-table entry form the
segment-frame absolute address. There is
no designation of a page table, and no page-
table entries are used.

— Bit 47 of the segment-table entry determines
the validity of the access-control bits and
fetch-protection bit (in bits 48-52 of the STE).

— Bits 48-52 of the segment-table entry contain
access-control bits and a fetch-protection bit
for the segment.

— Bit 55 the segment-table entry is the change-
recording override for the segment.

When the enhanced-DAT facility is not installed, bit
40 of control register 0 is reserved and should con-
tain zero; otherwise, the program may not operate
compatibly in the future.

Enhanced-DAT Terminology: For the purpose of
brevity, the following terms are used in conjunction
with the enhanced-DAT facility:

e The term “enhanced DAT applies” refers to the
case where all of the following are true:

— The enhanced-DAT facility is installed.

— The enhanced-DAT-enablement control, bit
40 of control register 0, is one.

— The address is translated by means of DAT-
table entries.

e The term “enhanced-DAT does not apply” refers
to the case where any of the following are true:

— The enhanced-DAT facility is not installed

— The enhanced-DAT facility is installed, but
the enhanced-DAT-enablement control is
zero

— The address is not translated by means of
DAT-table entries (that is, DAT is off; DAT is
on, but the ASCE designates a real space; or
the instruction uses a real address such as

LOAD USING REAL ADDRESS or STORE
USING REAL ADDRESS).

— A real address is implicitly used, for example
in the handling of an interruption, CPU
logout, or fetching of table entries for ART,
ASN translation, ASN authorization, DAT, or
PC-number translation.

Programming Notes:

1. If the program changes the state of the
enhanced-DAT-enablement control, then it
should also clear all entries from all TLBs in the
configuration by executing any of the following
instructions:

* PURGE TLB on all CPUs in the configuration
while DAT is off

e COMPARE AND SWAP AND PURGE that
purges the TLB

e SIGNAL PROCESSOR that sets the prefix of
all CPUs in the configuration

¢ SIGNAL PROCESSOR that sets the archi-
tectural mode

2. Before DAT is enabled or implicitly performed
(such as in LOAD REAL ADDRESS), the pro-
gram should ensure that the enhanced-DAT-
enablement control is consistent with the
enhanced-DAT-enablement control in any other
CPU in the configuration that may be performing
DAT.

Failure to follow these rules may result in unpredict-
able results, including the possibility of a delayed-
access machine-check condition being recognized.

Control Register 1

Control register 1 contains the primary address-
space-control element (PASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Primary Region-Table or
Segment-Table Designation (R=0)

Primary Region-Table or Segment-Table Origin

0 31

Primary Region-Table or

Segment-Table Origin (continued) GIPISXR | DT| TL

32 52 54555657585960 62 63

Chapter 3. Storage 3-37

Primary Real-Space Designation (R=1)

‘ Primary Real-Space Token Origin ‘
0 31
(clPls[xR

54 55 56 57 58 59 63

‘ Primary Real-Space Token Origin (cont.) ‘
32 52

The fields in the primary address-space-control ele-
ment are allocated as follows:

Primary Region-Table or Segment-Table Origin:

Bits 0-51 of the primary region-table or segment-
table designation in control register 1, with 12 zeros
appended on the right, form a 64-bit address that
designates the beginning of the primary region table
or segment table. It is unpredictable whether the
address is real or absolute. This table is called the
primary region table or segment table since it is used
to translate virtual addresses in the primary address
space.

Primary Subspace-Group Control (G): Bit 54 of
control register 1, when one, indicates that the
address space specified by the PASCE is the base
space or a subspace of a subspace group. When bit
54 is zero, the address space is not in a subspace

group.

Primary Private-Space Control (P): If bit 55 of
control register 1 is one, then (1) a one value of the
common-segment bit in a translation-lookaside-buffer
(TLB) representation of a segment-table entry pre-
vents the entry and the TLB page-table copy it desig-
nates from being used when translating references to
the primary address space, even with a match
between the table or token origin in control register 1
and the table origin in the TLB entry, (2) low-address
protection and fetch-protection override do not apply
to the primary address space; and (3) a translation-
specification exception is recognized if a reference to
the primary address space is translated by means of
a segment-table entry in storage and the common-
segment bit is one in the entry. Item 2 in the above
list applies even when the contents of control register
1 are a real-space designation.

Programming Note: With respect to item 1 in the
above list, when the contents of control register 1 are
a real-space designation, a one value of the com-
mon-segment bit in a TLB representation of a seg-
ment-table entry prevents the entry and the TLB
page-table copy it designates from being used

3-38

z/Architecture Principles of Operation

regardless of the value of the private-space control in
the real-space designation.

Primary Storage-Alteration-Event Control (S):
When the storage-alteration-space control in control
register 9 is one, bit 56 of control register 1 specifies,
when one, that the primary address space is one for
which storage-alteration events can occur. Bit 56 is
examined when the PASCE is used to perform
dynamic-address translation for a storage-operand
store reference. Bit 56 is ignored when the storage-
alteration-space control is zero.

Primary Space-Switch-Event Control (X): When
bit 57 of control register 1 is one:

* A space-switch-event program interruption
occurs when execution of the space-switching
form of PROGRAM CALL (PC-ss), PROGRAM
RETURN (PR-ss), or PROGRAM TRANSFER
(PT-ss) is completed. The interruption occurs if
bit 57 is one either before or after the operation.

* A space-switch-event program interruption
occurs upon completion of a RESUME PRO-
GRAM, SET ADDRESS SPACE CONTROL, or
SET ADDRESS SPACE CONTROL FAST
instruction that changes the address space from
which instructions are fetched either to or from
the home address space; that is, when instruc-
tions are fetched from the home address space
either before or after the operation but not both
before and after the operation.

e Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Real-Space Control (R): If bit 58 of con-
trol register 1 is zero, the register contains a region-
table or segment-table designation. If bit 58 is one,
the register contains a real-space designation. When
bit 58 is one, a one value of the common-segment bit
in a translation-lookaside-buffer (TLB) representation
of a segment-table entry prevents the entry and the
TLB page-table copy it designates from being used
when translating references to the primary address
space, even with a match between the token origin in
control register 1 and the table origin in the TLB
entry.

Primary Designation-Type Control (DT): When R
is zero, the type of table designation in control regis-

ter 1 is specified by bits 60 and 61 in the register, as
follows:

Bits 60

and 61 Designation Type
11 Region-first-table
10 Region-second-table
01 Region-third-table
00 Segment-table

When R is zero, bits 60 and 61 must be 11 binary
when an attempt is made to use the PASCE to trans-
late a virtual address in which the leftmost one bit is
in bit positions 0-10 of the address. Similarly, bits 60
and 61 must be 11 or 10 binary when the leftmost
one bit is in bit positions 11-21 of the address, and
they must be 11, 10, or 01 binary when the leftmost
one bit is in bit positions 22-32 of the address. Other-
wise, an ASCE-type exception is recognized.

Primary Region-Table or Segment-Table Length
(TL): Bits 62 and 63 of the primary region-table
designation or segment-table designation in control
register 1 specify the length of the primary region
table or segment table in units of 4,096 bytes, thus
making the length of the region table or segment
table variable in multiples of 512 entries. The length
of the primary region table or segment table, in units
of 4,096 bytes, is one more than the TL value. The
contents of the length field are used to establish
whether the portion of the virtual address (RFX,
RSX, RTX, or SX) to be translated by means of the
table designates an entry that falls within the table.

Primary Real-Space Token Origin: Bits 0-51 of
the primary real-space designation in control register
1, with 12 zeros appended on the right, form a 64-bit
address that may be used in forming and using TLB
entries that provide a virtual-equals-real translation
for references to the primary address space.
Although this address is used only as a token and is
not used to perform a storage reference, it still must
be a valid address; otherwise, an incorrect TLB entry
may be used when the contents of control register 1
are used.

The following bits of control register 1 are not
assigned and are ignored: bits 52, 53, and 59 if the
register contains a region-table designation or seg-
ment-table designation, and bits 52, 53 and 59-63 if
the register contains a real-space designation.

Control Register 7

Control register 7 contains the secondary address-
space-control element (SASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Secondary Region-Table or
Segment-Table Designation (R=0)

‘ Secondary Region-Table or Segment-Table Origin
0 31

Secondary Region-Table or
Segment-Table Origin (continued)
32 52

G|P|S| (R| |DT|TL

54 5556 57 58 59 60 62 63

Secondary Real-Space Designation (R=1)

‘ Secondary Real-Space Token Origin ‘
0 31
[olP[s] [F] |

54 55 56 57 58 59 63

‘Secondary Real-Space Token Origin (cont.)‘
32 52

The secondary region-table origin, secondary seg-
ment-table origin, secondary subspace-group control
(G), secondary private-space control (P), secondary
storage-alteration-event control (S), secondary real-
space control (R), secondary designation-type con-
trol (DT), secondary region-table or segment-table
length (TL), and secondary real-space token origin in
control register 7 are defined the same as the fields
in the same bit positions in control register 1, except
that control register 7 applies to the secondary
address space.

The following bits of control register 7 are not
assigned and are ignored: bits 52, 53, 57, and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52, 53, 57, and
59-63 if the register contains a real-space designa-
tion.

Control Register 13

Control register 13 contains the home address-
space-control element (HASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Chapter 3. Storage 3-39

Home Region-Table or
Segment-Table Designation (R=0)

‘ Home Region-Table or Segment-Table Origin ‘

0 31
Home Region-Table or
Segment-Table Origin (cont.) PISIXIR |DTITL

32 52 555657585960 62 63
Home Real-Space Designation (R=1)

‘ Home Real-Space Token Origin ‘
0 31
‘ Home Real-Space Token Origin (cont.) ‘ ‘P‘S‘X‘R‘ ‘
32 52 55 56 57 58 59 63

Home Space-Switch-Event Control (X): When bit
57 of control register 13 is one, a space-switch-event
program interruption occurs upon completion of a
RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CONTROL
FAST instruction that changes the address space
from which instructions are fetched either to or from
the home address space; that is, when instructions
are fetched from the home address space either
before or after the operation but not both before and
after the operation.

The home region-table origin, home segment-table
origin, home private-space control (P), home stor-
age-alteration-event control (S), home real-space
control (R), home designation-type control (DT),
home region-table or segment-table length (TL), and
home real-space token origin in control register 13
are defined the same as the fields in the same bit
positions in control register 1, except that control reg-
ister 13 applies to the home address space.

The following bits of control register 13 are not
assigned and are ignored: bits 52-54 and 59 if the
register contains a region-table designation or seg-
ment-table designation, and bits 52-54 and 59-63 if
the register contains a real-space designation.

Programming Notes:

1. The validity of the information loaded into a con-
trol register, including that pertaining to dynamic
address translation, is not checked at the time
the register is loaded. This information is
checked and the program exception, if any, is
indicated at the time the information is used.

3-40

z/Architecture Principles of Operation

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE DAT TABLE ENTRY, INVALIDATE
PAGE TABLE ENTRY, LOAD PAGE-TABLE-
ENTRY ADDRESS, LOAD REAL ADDRESS, or
STORE REAL ADDRESS is executed. The infor-
mation is not considered to be used when the
PSW specifies translation but an I/O, external,
restart, or machine-check interruption occurs
before an instruction is executed, or when the
PSW specifies the wait state.

Translation Tables

When the address-space-control element (ASCE)
used in a translation is a region-first-table designa-
tion, the translation process consists in a five-level
lookup using five tables: a region first table, a region
second table, a region third table a segment table,
and a page table. These tables reside in real or abso-
lute storage. When the ASCE is a region-second-
table designation, region-third-table designation, or
segment-table designation, the lookups in the levels
of tables above the designated level are omitted, and
the higher-level tables themselves are omitted.

Region-Table Entries

The term “region-table entry” means a region-first-
table entry, region-second-table entry, or region-third-
table entry.

The entries fetched from the region first table, region
second table, and region third table have the follow-
ing formats. The level (first, second, or third) of the
table containing an entry is identified by the table-
type (TT) bits in the entry.

Region-First-Table Entry (TT=11)

‘ Region-Second-Table Origin ‘
0 31
‘ Region-Second-Table Origin (continued) ‘ ‘P‘ ‘TFM ‘TT‘TL‘
32 52 54 56

585960 62 63

Region-Second-Table Entry (TT=10)

\ Region-Third-Table Origin \
0 31
| Region-Third-Table Origin (continued) | [P| [TF[1] [TT[TL]
32 52 54 56

585960 62 63

Region-Third-Table Entry (TT=01)

‘ Segment-Table Origin ‘
0 31

| | Segment-Table Origin (continued) | [P| |TF 1] |TT|TL]|
32 52 54 56

585960 62 63

The fields in the three levels of region-table entries
are allocated as follows:

Region-Second-Table Origin, Region-Third-Table
Origin, and Segment-Table Origin: A region-first-
table entry contains a region-second-table origin. A
region-second-table entry contains a region-third-
table origin. A region-third-table entry contains a seg-
ment-table origin. The following description applies to
each of the three origins. Bits 0-51 of the entry, with
12 zeros appended on the right, form a 64-bit
address that designates the beginning of the next-
lower-level table. It is unpredictable whether the
address is real or absolute.

DAT-Protection Bit (P): When enhanced DAT
applies, bit 54 is treated as being ORed with the DAT-
protection bit in each subsequent region-table entry,
segment-table entry, and, when applicable, page-
table entry used in the translation. Thus, when the bit
is one, DAT protection applies to the entire region or
regions specified by the region-table entry.

When the enhanced-DAT facility is not installed, or
when the facility is installed but the enhanced-DAT-
enablement control is zero, bit 54 of the region-table
entry is ignored.

Region-Second-Table Offset, Region-Third-Table
Offset, and Segment-Table Offset (TF): A region-
first-table entry contains a region-second-table off-
set. A region-second-table entry contains a region-
third-table offset. A region-third-table entry contains a
segment-table offset. The following description
applies to each of the three offsets. Bits 56 and 57 of
the entry specify the length of a portion of the next-
lower-level table that is missing at the beginning of
the table, that is, the bits specify the location of the
first entry actually existing in the next-lower-level
table. The bits specify the length of the missing por-
tion in units of 4,096 bytes, thus making the length of
the missing portion variable in multiples of 512
entries. The length of the missing portion, in units of
4,096 bytes, is equal to the TF value. The contents of
the offset field, in conjunction with the length field,
bits 62 and 63, are used to establish whether the por-

tion of the virtual address (RSX, RTX, or SX) to be
translated by means of the next-lower-level table des-
ignates an entry that actually exists in the table.

Region-Invalid Bit (I): Bit 58 in a region-first-table
entry or region-second-table entry controls whether
the set of regions associated with the entry is avail-
able. Bit 58 in a region-third-table entry controls
whether the single region associated with the entry is
available. When bit 58 is zero, address translation
proceeds by using the region-table entry. When the
bit is one, the entry cannot be used for translation.

Table-Type Bits (TT): Bits 60 and 61 of the region-
first-table entry, region-second-table entry, and
region-third-table entry identify the level of the table
containing the entry, as follows:

Bits 60

and 61 Region-Table Level
11 First
10 Second
01 Third

Bits 60 and 61 must identify the correct table level,
considering the type of table designation that is the
address-space-control element being used in the
translation and the number of table levels that have
so far been used; otherwise, a translation-specifica-
tion exception is recognized.

Region-Second-Table Length, Region-Third-Table
Length, and Segment-Table Length (TL): A
region-first-table entry contains a region-second-
table length. A region-second-table entry contains a
region-third-table length. A region-third-table entry
contains a segment-table length. The following
description applies to each of the three lengths. Bits
62 and 63 of the entry specify the length of the next-
lower-level table in units of 4,096 bytes, thus making
the length of the table variable in multiples of 512
entries. The length of the next-lower-level table, in
units of 4,096 bytes, is one more than the TL value.
The contents of the length field, in conjunction with
the offset field, bits 56 and 57, are used to establish
whether the portion of the virtual address (RSX,
RTX, or SX) to be translated by means of the next-
lower-level table designates an entry that actually
exists in the table.

All other bit positions of the region-table entry are
reserved for possible future extensions and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future. When enhanced DAT

Chapter 3. Storage 3-41

applies, the reserved bit positions of the region-table
entry should contain zeros even if the table entry is
invalid.

Segment-Table Entries

When enhanced DAT does not apply, or when
enhanced DAT applies and the STE-format control,
bit 53 of the segment-table entry is zero, the entry
fetched from the segment table has the following for-
mat:

Segment-Table Entry (TT=00, FC=0)

Page-Table Origin

Page-Table Origin (continued) (F; P [|C|TT

32 53 54 55

585960 62 63

When enhanced DAT applies and the STE-format
control is one, the entry fetched from the segment
table has the following format:

Segment-Table Entry (TT=00, FC=1)

| ‘ Segment-Frame Absolute Address ‘
0 31

Address (continued) v ACC IF C PO ey

| 3 44 4748

| Segment-Frame Absolute A F|,|C

525354555 585960 62 63

The fields in the segment-table entry are allocated as
follows:

Page-Table Origin: When enhanced DAT does not
apply, or when enhanced DAT applies but the STE-
format control, bit 53 of the segment-table entry, is
zero, bits 0-52, with 11 zeros appended on the right,
form a 64-bit address that designates the beginning
of a page table. It is unpredictable whether the
address is real or absolute.

Segment-Frame Absolute
When enhanced DAT applies and the STE-format
control is one, bits 0-43 of the entry, with 20 zeros
appended on the right, form the 64-bit absolute
address of the segment.

ACCF-Validity Control (AV): When enhanced DAT
applies and the STE-format control is one, bit 47 is
the access-control-bits and fetch-protection bit
(ACCF) validity control. When the AV control is zero,

3-42

z/Architecture Principles of Operation

Address (SFAA):

bits 48-52 of the segment-table entry are ignored.
When the AV control is one, bits 48-52 are used as
described below.

Access-Control Bits (ACC): When enhanced DAT
applies, the STE-format control is one, and the AV
control is one, bits 48-51 of the segment-table entry
contain the access-control bits that may be used for
any key-controlled access checking that applies to
the address. It is unpredictable whether the CPU
uses these bits or the access-control bits in the stor-
age key of the 4K-byte block corresponding to the
address.

Fetch-Protection Bit (F): When enhanced DAT
applies, the STE-format control is one, and the AV
control is one, bit 52 of the segment-table entry con-
tains the fetch-protection bit that may be used for any
key-controlled access checking that applies to the
address. It is unpredictable whether the CPU uses
this bit or the fetch-protection bit in the storage key of
the 4K-byte block corresponding to the address.

STE-Format Control (FC): When enhanced DAT
applies, bit 53 is the format control for the segment-
table entry, as follows:

* When the FC bit is zero, bits 0-52 of the entry
form the page-table origin, and bit 55 is reserved.

* When the FC bit is one, bits 0-43 of the entry
form the segment-frame absolute address, bit 47
is the ACCF-validity control, bits 48-51 are the
access-control bits, bit 52 is the fetch-protection
bit, and bit 55 is the change-recording override.

When enhanced DAT does not apply, bit 53 is
ignored.

DAT-Protection Bit (P): Bit 54, when one, indi-
cates that DAT protection applies to the entire seg-
ment.

When enhanced DAT does not apply, bit 54 is treated
as being ORed with the DAT-protection bit in the
page-table entry used in the translation.

When enhanced DAT applies, the DAT-protection bit
in any and all region-table entries used in the transla-
tion are treated as being ORed with the DAT-protec-
tion bit in the segment-table entry; when the STE-
format control is zero, the DAT-protection bit in the
STE is further treated as being ORed with the DAT-
protection bit in the page-table entry.

Change-Recording Override (CO): When
enhanced DAT applies, and the STE-format control is
one, bit 55 of the segment-table entry is the change-
recording override for the segment. See “Change-
Recording Override” on page 3-17 for a discussion of
change-recording-override processing.

When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format control is
zero, bit 55 of the segment-table entry is ignored.

Segment-Invalid Bit (I): Bit 58 controls whether
the segment associated with the segment-table entry
is available. When the bit is zero, address translation
proceeds by using the segment-table entry. When
the bit is one, the segment-table entry cannot be
used for translation.

Common-Segment Bit (C): Bit 59 controls the use
of the translation-lookaside-buffer (TLB) copies of the
segment-table entry. When enhanced DAT does not
apply or when enhanced DAT applies but the format
control is zero, bit 59 also controls the use of the TLB
copies of the page table designated by the segment-
table entry. A zero identifies a private segment; in this
case, the segment-table entry and the page table it
designates may be used only in association with the
segment-table origin that designates the segment
table in which the segment-table entry resides. A one
identifies a common segment; in this case, the seg-
ment-table entry and any page table it designates
may continue to be used for translating addresses
corresponding to the segment index, even though a
different segment table is specified. However, TLB
copies of the segment-table entry and any page table
for a common segment are not usable if the private-
space control, bit 55, is one in the address-space-
control element used in the translation or if that
address-space-control element is a real-space desig-
nation. The common-segment bit must be zero if the
segment-table entry is fetched from storage during a
translation when the private-space control is one in
the address-space-control element being used; oth-
erwise, a translation-specification exception is recog-
nized.

Table-Type Bits (TT): Bits 60 and 61 of the seg-
ment-table entry are 00 binary to identify the level of
the table containing the entry. The meanings of all

possible values of bits 60 and 61 in a region-table
entry or segment-table entry are as follows:

Bits 60
and 61 Table Level
11 Region-first
10 Region-second

01 Region-third
00 Segment

Bits 60 and 61 must identify the correct table level,
considering the type of table designation that is the
address-space-control element being used in the
translation and the number of table levels that have
so far been used; otherwise, a translation-specifica-
tion exception is recognized.

All other bit positions of the segment-table entry are
reserved for possible future extensions and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future. When enhanced DAT
applies, the reserved bit positions of the segment-
table entry should contain zeros even if the table
entry is invalid.

Programming Note: When the common-segment
(C) bit is one in a valid segment-table entry fetched
from storage during dynamic-address translation for
a non-private address space, that is, for an address
space in which the private-space control is zero in
the address-space-control element being used, then
the following conditions apply:

1. The segment-table entries corresponding to the
same virtual address in all other non-private
address spaces must be identical.

If the program alters such a segment-table entry
in one non-private address space, then it must
also (a) identically alter all other segment-table
entries corresponding to the same Vvirtual
address in all other non-private address spaces,
and (b) ensure that the affected entries are
cleared from the TLBs of all CPUs in the configu-
ration. Further information on clearing TLB
entries may be found in “Modification of Transla-
tion Tables” on page 3-55.

2. The program must ensure that segment-table
entries in which the C bit is set to one, and any
region-table entries used by the DAT process to
locate such segment-table entries, are consistent
across all address spaces. That is, if the DAT
process can successfully locate a segment-table
entry in which the C bit is one in one non-private

Chapter 3. Storage 3-43

address space, then there must be no exception
condition that prevents DAT from locating the
segment-table entry corresponding to the same
virtual address in any other non-private address
spaces.

If the program alters such a segment-table entry
or region-table entry in one non-private address
space, then it must also (a) perform consistent
alteration to all corresponding table entries in all
other non-private address spaces, and
(b) ensure that the affected entries are cleared
from the TLBs of all CPUs in the configuration.

3. If the program fails to maintain consistent DAT
table entries as described above, results are
unpredictable and may include the presentation
of a delayed-access-exception machine check,
as described in “Delayed Access Exception” on
page 11-17.

Page-Table Entries
The entry fetched from the page table entry has the
following format:

‘ Page-Frame Real Address ‘
0 31

C
0

32 52 53 54 55 56 63

Page-Frame Real Address (continued) |0|1|P

The fields in the page-table entry are allocated as fol-
lows:

Page-Frame Real Address (PFRA): Bits 0-51 pro-
vide the leftmost bits of a real storage address. When
these bits are concatenated with the 12-bit byte-
index field of the virtual address on the right, a 64-bit
real address is obtained.

Page-Invalid Bit (I): Bit 53 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation pro-
ceeds by using the page-table entry. When the bit is
one, the page-table entry cannot be used for transla-
tion.

DAT-Protection Bit (P): Bit 54 controls whether
store accesses can be made in the page. This pro-
tection mechanism is in addition to the key-con-
trolled-protection and low-address-protection
mechanisms. The bit has no effect on fetch
accesses. If the bit is zero, stores are permitted to the
page, subject to the following additional constraints:

3-44

z/Architecture Principles of Operation

e The DAT-protection bit being zero in the seg-
ment-table entry used in the translation,

* When enhanced DAT applies, the DAT-protection
bit being zero in all region-table entries used in
the translation,

e Other protection mechanisms

If the bit is one, stores are disallowed. When no
higher priority exception conditions exist, an attempt
to store when the DAT-protection bit is one causes a
protection exception to be recognized. The DAT-pro-
tection bit in the segment-table entry is treated as
being ORed with bit 54 when determining whether
DAT protection applies to the page. When enhanced
DAT applies, the DAT-protection bits in any region-
table entries used in translation are also treated as
being ORed with bit 54 when determining whether
DAT-protection applies.

Change-Recording Override (CO): When
enhanced DAT does not apply, bit 55 of the page-
table entry must contain zero; otherwise, a transla-
tion-specification exception is recognized as part of
the execution of an instruction using that entry for
address translation. When enhanced DAT applies
and the STE-format control is zero, bit 55 of the
page-table entry is the change-recording override for
the page. See “Change-Recording Override” on
page 3-17 for a discussion of change-recording-over-
ride processing.

Bit position 52 of the entry must contain zero; other-
wise, a translation-specification exception is recog-
nized as part of the execution of an instruction using
that entry for address translation.

Bit positions 56-63 are not assigned and are ignored

Translation Process

This section describes the translation process as it is
performed implicitly before a virtual address is used
to access main storage. Explicit translation, which is
the process of translating the operand address of
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS, STORE REAL ADDRESS, and
TEST PROTECTION, is the same, except that, for
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS and TEST PROTECTION, region-
first-translation, region-second-translation, region-
third-translation, and segment-translation exceptions

are not recognized, and for LOAD REAL ADDRESS
and TEST PROTECTION, page-translation excep-
tions are not recognized; such conditions are instead
indicated by the condition code. Translation of the
operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS and STORE
REAL ADDRESS also differs in that the CPU may be
in the real mode.

Translation of a virtual address is controlled by the
DAT-mode bit and address-space-control bits in the
PSW and by the address-space-control elements
(ASCEs) in control registers 1, 7, and 13 and as
specified by the access registers. When the ASCE
used in a translation is a region-first-table designa-
tion, the translation is performed by means of a
region first table, region second table, region third
table, segment table, and page table, all of which
reside in real or absolute storage. When the ASCE is
a lower-level type of table designation (region-sec-
ond-table designation, region-third-table designa-
tion, or segment-table designation) the translation is
performed by means of only the table levels begin-
ning with the designated level, and the virtual-
address bits that would, if nonzero, require use of a
higher level or levels of table must be all zeros; other-
wise, an ASCE-type exception is recognized. When
the ASCE is a real-space designation, the virtual
address is treated as a real address, and table
entries in real or absolute storage are not used.

The address-space-control element (ASCE) used for
a particular address translation is called the effective
ASCE. Accordingly, when a primary virtual address is
translated, the contents of control register 1 are used
as the effective ASCE. Similarly, for a secondary vir-
tual address, the contents of control register 7 are
used; for an AR-specified virtual address, the ASCE
specified by the access register is used; and for a
home virtual address, the contents of control register
13 are used.

When the real-space control in the effective ASCE is
zero, the designation-type control in the ASCE speci-
fies the table-designation type of the ASCE: region-
first-table designation, region-second-table designa-
tion, region-third-table designation, or segment-table
designation. The corresponding portion of the virtual
address (region first index, region second index,
region third index, or segment index) is checked
against the table-length field in the designation, and it
is added to the origin in the designation to select an
entry in the designated table. If the selected entry is
outside its table, as determined by the table-length

field in the designation, or if the | bit is one in the
selected entry, a region-first-translation, region-sec-
ond-translation, region-third-translation, or segment-
translation exception is recognized, depending on the
table level specified by the designation. If the table-
type bits in the selected entry do not indicate the
expected table level, a translation-specification
exception is recognized.

The table entry selected by means of the effective
ASCE designates the next-lower-level table to be
used. If the current table is a region first table, region
second table, or region third table, the next portion of
the virtual address (region second index, region third
index, or segment index, respectively) is checked
against the table-offset and table-length fields in the
current table entry, and it is added to the origin in the
entry to select an entry in the next-lower-level table. If
the selected entry in the next table is outside its table,
as determined by the table-offset and table-length
fields in the current table entry, or if the | bit is one in
the selected entry, a region-second-translation,
region-third-translation, or segment-translation
exception is recognized, depending on the level of
the next table. If the table-type bits in the selected
entry do not indicate the expected table level, a trans-
lation-specification exception is recognized.

Processing of portions of the virtual address by
means of successive table levels continues until a
segment-table entry has been selected. When
enhanced DAT applies, the DAT-protection bit in any
and all region-table entries used during the transla-
tion are treated as being ORed with the respective bit
in segment-table entry.

When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format control is
zero, the following conditions are in effect:

e The segment-table entry contains a DAT-protec-
tion bit that applies to all pages in the specified
segment; the segment-table entry also contains
a common-segment bit that controls the use of
the TLB copies of the page table designated by
the segment-table entry.

* The segment-table entry designates the page
table to be used.

* The page-index portion of the virtual address is
added to the page-table origin in the segment-
table entry to select an entry in the page table. If
the | bit is one in the page-table entry, a page-
translation exception is recognized. The page-

Chapter 3. Storage 3-45

table entry contains the leftmost bits of the real
address that represents the translation of the vir-
tual address, and it contains a DAT-protection bit
that applies only to the page specified by the
page-table entry; when enhanced DAT applies
and the STE-format control is zero, the page-
table entry also contains a change-recording
override that applies only to the page.

* The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

When enhanced DAT applies and the STE-format
control is one, the following conditions are in effect:

* The segment-table entry contains the leftmost
bits of the absolute address that represents the
translation of the virtual address.

e The page-index and byte-index fields of the vir-
tual address are used unchanged as the right-
most bit positions of the real address.

e The segment-table entry also contains the
ACCF-validity control, the access-control bits,
the fetch-protection bit, the DAT-protection bit,
the change-recording override, and common-
segment bit that apply to the segment.

In order to eliminate the delay associated with refer-
ences to translation tables in real or absolute stor-
age, the information fetched from the tables normally
is also placed in a special buffer, the translation-
lookaside buffer (TLB), and subsequent translations
involving the same table entries may be performed by

3-46

z/Architecture Principles of Operation

using the information recorded in the TLB. The TLB
may also record virtual-equals-real translations
related to a real-space designation. The operation of
the TLB is described in “Translation-Lookaside
Buffer” on page 3-52.

Whenever access to real or absolute storage is made
during the address-translation process for the pur-
pose of fetching an entry from a region table, seg-
ment table, or page table, key-controlled protection
does not apply.

The translation process, including the effect of the
TLB, is shown graphically in Figure 3-11 on
page 3-47.

Inspection of Real-Space Control

When the effective address-space-control element
(ASCE) contains a real-space control, bit 58, having
the value zero, the ASCE is a region-table or seg-
ment-table designation. When the real-space control
is one, the ASCE is a real-space designation.

Inspection of Designation-Type Control

When the real-space control is zero, the designation-
type control, bits 60 and 61 of the effective address-
space-control element (ASCE), specifies the table-
designation type of the ASCE. Depending on the
type, some number of leftmost bits of the virtual
address being translated must be zeros; otherwise,
an ASCE-type exception is recognized. For each
possible value of bits 60 and 61, the table-designa-

Virtual Address

T RX 1
RFX RSX RTX SX PX BX
Program Status Word
‘O‘R‘OOO‘T‘I‘E‘ Key ‘O‘MMP‘AS‘CC‘ Mask ‘ooooooo
\ DT<2 N Jrue*
' and
' RFX =0
.
CR1 (PASCE) ————— {00 False
ASTE (AR-specified ASCE) —————»{ 01 DT<1& True®
RFX Il RSX

CR7 (SASCE) ——— |10
CR13 (HASCE) ——— | 11

False
Effective Address-Space Control Element

—»‘ Region-Table or Segment-Table Origin (R = 0) | |G|P|S|><|R| |DT|TL|

(x 4096) ,
T s X

00 01 10 11
(RFX x 8)
Region-First Table (RFT)
Region-First-Table Entry (RFTE) 5
Region-Second-Table Origin (RSTO) ‘ ‘F“ ‘TF‘ |‘ ‘TT‘TL
v (I=1)
(x 4096)
(RSX x 8)
Region-Second Table (RST)
o
Region-Second-Table Entry (RSTE) &
Region-Third-Table Origin (RTO) ‘ ‘F“ ‘TF‘ |‘ ‘TT‘TL
(x 4096)
(RTX x 8)
Region-Third Table (RST)
E
Region-Third-Table Entry (RTTE) 5
Segment-Table Origin (STO) ‘ ‘F“ ‘TF‘ |‘ ‘TT‘TL
(x 4096)

(SXx8)

Segment Table (ST)

Segment-Table Entry (STE)
Page-Table Origin (FC=0) or ‘F

Segment-Frame Absolute Address (FC=1)

See next page See next page

See next page @ STEFC

Explanation:

Examination of the table-offset (TF) is not performed when the table entry is in a table that is designated by the ASCE.

When the table entry is designated by the ASCE, the second comparand is the table-length field (TL) in the ASCE.

Table origin is one of the two pointers: either from the ASCE or from the next-higher table entry.

RFX is not used as a table index when ASCE.DT is less than or equal to 2.

RFX and RSX are not used as table indices when ASCE.DT is less than or equal to 1.

RFX, RSX, and RTX are not used as table indices when ASCE.DT is equal to 0.

STE FC and CO are valid only when enhanced DAT applies; SFAA applies only when STE.FC is one.

The DAT-protection bit (P) in the region-table entries is only meaningful when enhanced DAT applies.

@ Rightmost two hex digits of the program-interruption code recognized for the condition shown, or when the invalid (1) bit is on in the selected table entry.

P

Figure 3-11. Translation Process

Chapter 3. Storage 3-47

Virtual Address

T RX !
RFX RSX RTX SX PX BX
When enhanced DAT does not apply, or D _ - |
when the STE-format control (FC) is zero. RN
N N
N
\
v
Segment Table (ST, from previous page) ' @
Segment-Table Entry (STE) .
Page-Frame Real Origin ‘EH ‘ HC‘TI"
(x 2048)
(PX x 8)
l Page Table (PT)
+ . .
Page-Table Entry (PTE) Translation Look-Aside Buffer
Page-Frame Real Address ‘OMPH ,
I — PFRA
@
> .
Note:
When enhanced DAT applies, bit position 55 of the page-table entry contains Real Address
the change-bit override; when enhanced DAT does not apply, bit position 55 of Page-Frame Real Address BX
the page-table entry is reserved and must contain zero.
Virtual Address
T RX !
RFX | RSX | RTX sX PX BX
When enhanced DAT applies and the STE-
format control (FC) is one: D T .l
N c
N
\
\
Segment Table (ST) !
\ Translation Look-Aside Buffer
Segment-Table Entry (STE) v
Segment-Frame Absolute Address C ACC FEPC e
N SFAA
[=>
Absolute Address
Segment-Frame Absolute Address PX BX

Figure 3-11. Translation Process (Continued)

tion type and the virtual-address bits required to be
zeros are as follows:

Bits 60
and 61 Designation Type

Virtual-Address Bits
Required to be Zeros

11 Region-first-table None

10 Region-second-table 0-10

01 Region-third-table 0-21

00 Segment-table 0-32
3-48 z/Architecture Principles of Operation

Lookup in a Table Designated by an
Address-Space-Control Element

The designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies both the table-designation type of the ASCE
and the portion of the virtual address that is to be

translated by means of the designated table, as fol-
lows:

Virtual-Address

Bits 60 Portion Translated
and 61 Designation Type by the Table
11 Region-first-table Region first index
(bits 0-10)
10 Region-second-table Region second index
(bits 11-21)
01 Region-third-table Region third index
(bits 22-32)
00 Segment-table Segment index
(bits 33-43)

When bits 60 and 61 have the value 11 binary, the
region-first-index portion of the virtual address, in
conjunction with the region-first-table origin con-
tained in the ASCE, is used to select an entry from
the region first table.

The 64-bit address of the region-first-table entry in
real or absolute storage is obtained by appending 12
zeros to the right of bits 0-51 of the region-first-table
designation and adding the region first index with
three rightmost and 50 leftmost zeros appended.
When a carry out of bit position 0 occurs during the
addition, an addressing exception may be recog-
nized, or the carry may be ignored, causing the table
to wrap from 2% - 1 to zero. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode. When forming the address of a region-first-,
region-second-, region-third-, or segment-table entry,
it is unpredictable whether prefixing, if any, is applied
to the respective table origin contained in the ASCE
before the addition of the table index value, or prefix-
ing is applied to the table-entry address that is
formed by the addition of the table origin and table
index value.

As part of the region-first-table-lookup process, bits 0
and 1 of the virtual address (which are bits 0 and 1 of
the region first index) are compared against the table
length, bits 62 and 63 of the region-first-table desig-
nation, to establish whether the addressed entry is
within the region first table. If the value in the table-
length field is less than the value in the correspond-
ing bit positions of the virtual address, a region-first-
translation exception is recognized. The comparison
against the table length may be omitted if the equiva-
lent of a region-first-table entry in the translation-
lookaside buffer is used in the translation.

All eight bytes of the region-first-table entry appear to
be fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address generated for fetching the
region-first-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the unit of operation is
suppressed.

Bit 58 of the entry fetched from the region first table
specifies whether the corresponding set of regions is
available. This bit is inspected, and, if it is one, a
region-first-translation exception is recognized.

A translation-specification exception is recognized if
the table-type bits, bits 60 and 61, in the region-first-
table entry do not have the same value as bits 60 and
61 of the ASCE.

When no exceptions are recognized in the process of
region-first-table lookup, the entry fetched from the
region first table designates the beginning and speci-
fies the offset and length of the corresponding region
second table.

When bits 60 and 61 of the ASCE have the value 10
binary, the region-second-index portion of the virtual
address, in conjunction with the region-second-table
origin contained in the ASCE, is used to select an
entry from the region second table. Bits 11 and 12 of
the virtual address (which are bits 0 and 1 of the
region second index) are compared against the table
length in the ASCE. If the value in the table-length
field is less than the value in the corresponding bit
positions of the virtual address, a region-second-
translation exception is recognized. The comparison
against the table length may be omitted if the equiva-
lent of a region-second-table entry in the translation-
lookaside buffer is used in the translation. The
region-second-table-lookup process is otherwise the
same as the region-first-table-lookup process, except
that a region-second-translation exception is recog-
nized if bit 58 is one in the region-second-table entry.
When no exceptions are recognized, the entry
fetched from the region second table designates the
beginning and specifies the offset and length of the
corresponding region third table.

When bits 60 and 61 of the ASCE have the value 01
binary, the region-third-index portion of the virtual
address, in conjunction with the region-third-table ori-
gin contained in the ASCE, is used to select an entry
from the region third table. Bits 22 and 23 of the vir-
tual address (which are bits 0 and 1 of the region

Chapter 3. Storage 3-49

third index) are compared against the table length in
the ASCE. If the value in the table-length field is less
than the value in the corresponding bit positions of
the virtual address, a region-third-translation excep-
tion is recognized. The comparison against the table
length may be omitted if the equivalent of a region-
third-table entry in the translation-lookaside buffer is
used in the translation. The region-third-table-lookup
process is otherwise the same as the region-first-
table-lookup process, including the checking of the
table-type bits in the region-third-table entry, except
that a region-third-translation exception is recognized
if bit 58 is one in the region-third-table entry. When
no exceptions are recognized, the entry fetched from
the region third table designates the beginning and
specifies the offset and length of the corresponding
segment table.

When bits 60 and 61 of the ASCE have the value 00
binary, the segment-index portion of the virtual
address, in conjunction with the segment-table origin
contained in the ASCE, is used to select an entry
from the segment table. Bits 33 and 34 of the virtual
address (which are bits 0 and 1 of the segment
index) are compared against the table length in the
ASCE. If the value in the table-length field is less
than the value in the corresponding bit positions of
the virtual address, a segment-translation exception
is recognized. The comparison against the table
length may be omitted if the equivalent of a segment-
table entry in the translation-lookaside buffer is used
in the translation. A translation-specification excep-
tion is recognized if (1) the private-space control, bit
55, in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment table
is one. The segment-table-lookup process is other-
wise the same as the region-first-table-lookup pro-
cess, including the checking of the table-type bits in
the segment-table entry, except that a segment-
translation exception is recognized if bit 58 is one in
the segment-table entry. When no exceptions are
recognized, processing is as follows:

* When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format con-
trol is zero, the entry fetched from the segment
table designates the beginning of the corre-
sponding page table, and processing continues
as described in “Page-Table Lookup”, below.

e When enhanced DAT applies and the STE-for-
mat control is one, the entry fetched from the
segment table contains the leftmost bits of the
segment-frame absolute address. If the DAT-pro-

3-50

z/Architecture Principles of Operation

tection bit, bit 54, is one either in any region-table
entry used in the translation or in the segment-
table entry, and the storage reference for which
the translation is being performed is a store, a
protection exception is recognized.

Lookup in a Table Designated by a
Region-Table Entry

When the effective address-space-control element
(ASCE) is a region-table designation, a region-table
entry is selected as described in the preceding sec-
tion. Then the contents of the selected entry and the
next index portion of the virtual address are used to
select an entry in the next-lower-level table, which
may be another region table or a segment table.

When the table entry selected by means of the ASCE
is a region-first-table entry, the region-second-index
portion of the virtual address, in conjunction with the
region-second-table origin contained in the region-
first-table entry, is used to select an entry from the
region second table.

The 64-bit address of the region-second-table entry
in real or absolute storage is obtained by appending
12 zeros to the right of bits 0-51 of the region-first-
table entry and adding the region second index with
three rightmost and 50 leftmost zeros appended.
When a carry out of bit position 0 occurs during the
addition, an addressing exception may be recog-
nized, or the carry may be ignored, causing the table
to wrap from 2% - 1 to zero. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode. When forming the address of a region-sec-
ond-, region-third-, or segment-table entry, it is
unpredictable whether prefixing, if any, is applied to
the respective table origin contained in the higher-
level table entry before the addition of the table index
value, or prefixing is applied to the table-entry
address that is formed by the addition of the table ori-
gin and table index value.

As part of the region-second-table-lookup process,
bits 11 and 12 of the virtual address (which are bits 0
and 1 of the region second index) are compared
against the table offset, bits 56 and 57 of the region-
first-table entry, and against the table length, bits 62
and 63 of the region-first-table entry, to establish
whether the addressed entry is within the region sec-
ond table. If the value in the table-offset field is
greater than the value in the corresponding bit posi-
tions of the virtual address, or if the value in the table-

length field is less than the value in the correspond-
ing bit positions of the virtual address, a region-sec-
ond-translation exception is recognized.

All eight bytes of the region-second-table entry
appear to be fetched concurrently as observed by
other CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the region-second-table entry designates a
location which is not available in the configuration, an
addressing exception is recognized, and the unit of
operation is suppressed.

Bit 58 of the entry fetched from the region second
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it is
one, a region-second-translation exception is recog-
nized.

A translation-specification exception is recognized if
the table-type bits, bits 60 and 61, in the region-sec-
ond-table entry do not have a value that is one less
than the value of those bits in the next-higher-level
table.

When no exceptions are recognized in the process of
region-second-table lookup, the entry fetched from
the region second table designates the beginning
and specifies the offset and length of the correspond-
ing region third table.

When the table entry selected by means of the ASCE
is a region-second-table entry, or if a region-second-
table entry has been selected by means of the con-
tents of a region-first-table entry, the region-third-
index portion of the virtual address, in conjunction
with the region-third-table origin contained in the
region-second-table entry, is used to select an entry
from the region third table. Bits 22 and 23 of the vir-
tual address (which are bits 0 and 1 of the region
third index) are compared against the table offset and
table length in the region-second-table entry. A
region-third-translation exception is recognized if the
table offset is greater than bits 22 and 23 or if the
table length is less than bits 22 and 23. The region-
third-table-lookup process is otherwise the same as
the region-second-table-lookup process, including
the checking of the table-type bits in the region-third-
table entry, except that a region-third-translation
exception is recognized if bit 58 is one in the region-
third-table entry. When no exceptions are recog-
nized, the entry fetched from the region third table
designates the beginning and specifies the offset and
length of the corresponding segment table.

When the table entry selected by means of the ASCE
is a region-third-table entry, or if a region-third-table
entry has been selected by means of the contents of
a region-second-table entry, the segment-index por-
tion of the virtual address, in conjunction with the
segment-table origin contained in the region-third-
table entry, is used to select an entry from the seg-
ment table. Bits 33 and 34 of the virtual address
(which are bits 0 and 1 of the segment index) are
compared against the table offset and table length in
the region-third-table entry. A segment-translation
exception is recognized if the table offset is greater
than bits 33 and 34 or if the table length is less than
bits 33 and 34. A translation-specification exception
is recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment bit,
bit 59, in the entry fetched from the segment table is
one. The segment-table-lookup process is otherwise
the same as the region-second-table-lookup process,
including the checking of the table-type bits in the
segment-table entry, except that a segment-transla-
tion exception is recognized if bit 58 is one in the seg-
ment-table entry. When no exceptions are
recognized, processing is as follows:

* When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format con-
trol is zero, the entry fetched from the segment
table designates the beginning of the corre-
sponding page table, and processing continues
as described in “Page-Table Lookup”, below.

When enhanced DAT applies and the STE-format
control is one, the entry fetched from the segment
table contains the leftmost bits of the segment-frame
absolute address. If the DAT-protection bit, bit 54, is
one either in any region-table entry used in the trans-
lation or in the segment-table entry, and the storage
reference for which the translation is being performed
is a store, a protection exception is recognized.

Page-Table Lookup

When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format control is
zero, the page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 64-bit address of the page-table entry in real or
absolute storage is obtained by appending 11 zeros
to the right of the page-table origin and adding the
page index, with three rightmost and 53 leftmost

Chapter 3. Storage 3-51

zeros appended. A carry out of bit position 0 cannot
occur. All 64 bits of the address are used, regardless
of whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

All eight bytes of the page-table entry appear to be
fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address generated for fetching the page-
table entry designates a location which is not avail-
able in the configuration, an addressing exception is
recognized, and the unit of operation is suppressed.

The entry fetched from the page table indicates the
availability of the page and contains the leftmost bits
of the page-frame real address. The page-invalid bit,
bit 53, is inspected to establish whether the corre-
sponding page is available. If this bit is one, a page-
translation exception is recognized. If bit position 52
contains a one, a translation-specification exception
is recognized. When enhanced DAT does not apply,
or enhanced DAT applies and the STE-format control
is zero, a translation-specification exception is also
recognized if bit position 55 contains a one. If the
DAT-protection bit, bit 54, is one either in the seg-
ment-table entry used in the translation, in the page-
table entry, or, when enhanced DAT applies, in any
region-table entry used during the translation, and
the storage reference for which the translation is
being performed is a store, a protection exception is
recognized.

Formation of the Real and Absolute
Addresses

When the effective address-space-control element
(ASCE) is a real-space designation, bits 0-63 of the
virtual address are used directly as the real storage
address. The real address is then subjected to prefix-
ing to form an absolute address.

When the effective ASCE is not a real-space desig-
nation and no exceptions in the translation process
are encountered, the following conditions apply:

* When the enhanced DAT does not apply, or
when enhanced DAT applies but the STE format
control is zero, the page-frame real address is
obtained from the page-table entry. The page-
frame real address and the byte-index portion of
the virtual address are concatenated, with the
page-frame real address forming the leftmost
part. The result is the real storage address which

3-52

z/Architecture Principles of Operation

corresponds to the virtual address. The real
address is then subjected to prefixing to form an
absolute address.

* When enhanced DAT applies and the STE format
control is one, the segment-frame absolute
address and the page-index and byte-index por-
tions of the virtual address are concatenated, left
to right, respectively, to form the absolute
address which corresponds to the virtual
address.

All 64 bits of the real and absolute addresses are
used, regardless of whether the current PSW speci-
fies the 24-bit, 31-bit, or 64-bit addressing mode.

Recognition of Exceptions during
Translation

Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when informa-
tion contained in table entries is used for translation
and is found to be incorrect.

The information pertaining to DAT is considered to be
used when an instruction is executed with DAT on or
when INVALIDATE DAT TABLE ENTRY, INVALIDATE
PAGE TABLE ENTRY, LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS, or STORE
REAL ADDRESS is executed. The information is not
considered to be used when the PSW specifies DAT
on but an /O, external, restart, or machine-check
interruption occurs before an instruction is executed,
or when the PSW specifies the wait state. Only that
information required in order to translate a virtual
address is considered to be in use during the transla-
tion of that address, and, in particular, addressing
exceptions that would be caused by the use of an
address-space-control element are not recognized
when that address-space-control element is not the
one actually used in the translation.

A list of translation exceptions, with the action taken
for each exception and the priority in which the
exceptions are recognized when more than one is
applicable, is provided in “Recognition of Access
Exceptions” on page 6-40.

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented such
that some of the information specified in the region
tables, segment tables, and page tables is main-
tained in a special buffer, referred to as the transla-
tion-lookaside buffer (TLB). The CPU necessarily
refers to a DAT-table entry in real or absolute storage
only for the initial access to that entry. This informa-
tion may be placed in the TLB, and subsequent
translations may be performed by using the informa-
tion in the TLB. For consistency of operation, the vir-
tual-equals-real translation specified by a real-space
designation also may be performed by using informa-
tion in the TLB. The presence of the TLB affects the
translation process to the extent that (1) a modifica-
tion of the contents of a table entry in real or absolute
storage does not necessarily have an immediate
effect, if any, on the translation, (2) a region-first-table
origin, region-second-table origin, region-third-table
origin, segment-table origin, or real-space token ori-
gin in an address-space-control element (ASCE)
may select a TLB entry that was formed by means of
an ASCE containing an origin of the same value even
when the two origins are of different types, and
(3) the comparison against the table length in an
address-space-control element may be omitted if a
TLB equivalent of the designated table entry is used.
In a multiple-CPU configuration, each CPU has its
own TLB.

Entries within the TLB are not explicitly addressable
by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is per-
missible. Furthermore, information in the TLB may be
cleared under conditions additional to those for which
clearing is mandatory.

TLB Structure

The description of the logical structure of the TLB
covers the implementation by all systems operating
as defined by z/Architecture. The TLB entries are
considered as being of three types: TLB combined
region-and-segment-table entries, TLB page-table
entries, and TLB real-space entries. A TLB combined
region-and-segment-table entry or TLB page-table
entry is considered as containing within it both the
information obtained from the table entry or entries in
real or absolute storage and the attributes used to
fetch this information from storage. A TLB real-space
entry is considered as containing a page-frame real

address and the real-space token origin and region,
segment, and page indexes used to form the entry.

The token origin in a TLB real-space entry is indistin-
guishable from the table origin in a TLB combined
region-and-segment-table entry.

Note: The following sections describe the conditions
under which information may be placed in the TLB,
the conditions under which information from the TLB
may be used for address translation, and how
changes to the translation tables affect the transla-
tion process.

Formation of TLB Entries

The formation of TLB combined region-and-seg-
ment-table entries and TLB page-table entries from
table entries in real or absolute storage, and the
effect of any manipulation of the contents of table
entries in storage by the program, depend on
whether the entries in storage are attached to a par-
ticular CPU and on whether the entries are valid.

The attached state of a table entry denotes that the
CPU to which it is attached can attempt to use the
table entry for implicit address translation, except that
a table entry for the primary or home address space
may be attached even when the CPU does not fetch
from either of those spaces. A table entry may be
attached to more than one CPU at a time.

The valid state of a table entry denotes that the
region set, region, segment, or page associated with
the table entry is available. An entry is valid when the
region-invalid, segment-invalid, or page-invalid bit in
the entry is zero.

The region-table entries, if any, and the segment-
table entry used to form a TLB combined region-and-
segment-table entry are called a translation path. A
translation path may be placed in the TLB as a com-
bined region-and-segment-table entry whenever all
entries in the path are attached and valid and would
not cause a translation-specification exception if
used for translation. Similarly, a page-table entry may
be placed in the TLB whenever the entry is attached
and valid and would not cause a translation-specifi-
cation exception if used for translation.

The highest-level table entry in a translation path is
attached when it is within a table designated by an
attaching address-space-control element (ASCE).
“Within a table” means as determined by the origin

Chapter 3. Storage 3-53

and length fields in the ASCE. An ASCE is an attach-
ing ASCE when all of the following conditions are
met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that would
cause an early specification exception to be rec-
ognized.

3. The ASCE meets the requirements in a, b, ¢, d,
or e below.

a. The ASCE is the primary ASCE in control
register 1.

b. The ASCE is the secondary ASCE in control
register 7, and either of the following require-
ments is met:

e The CPU is in the secondary-space
mode or access-register mode.

e The CPU is in the primary-space mode,
and the secondary-space control, bit 37
of control register 0, is one.

c. The ASCE is in either an attached and valid
ASN-second-table entry (ASTE) or a usable
ALB ASTE, and the CPU is in the access-
register mode. See “ART-Lookaside Buffer’
on page 5-60 for the meaning of the termi-
nology used here.

d. The ASCE is the home ASCE in control reg-
ister 13.

e. For the R, operand of the LOAD PAGE-
TABLE-ENTRY ADDRESS instruction, the
ASCE is that specified by the M, field.

Each of the remaining table entries in a translation
path is attached when the next-higher-level entry is
attached and valid and would not cause a translation-
specification exception if used for translation and the
subject entry is within the table designated by the
next-higher-level entry. “Within the table” means as
determined by the origin, offset, and length fields in
the next-higher-level entry.

A page-table entry is attached when it is within the
page table designated by either an attached and
valid segment-table entry that would not cause a
translation-specification exception if used for transla-
tion or a usable TLB combined region-and-segment-
table entry. A usable TLB combined region-and-seg-
ment-table entry is explained in the next section.

3-54

z/Architecture Principles of Operation

A region-table entry or segment-table entry causes a
translation-specification exception if the table-type
bits, bits 60 and 61, in the entry are inconsistent with
the level at which the entry would be encountered
when using the translation path in the translation pro-
cess. A segment-table entry also causes a transla-
tion-specification exception if the private-space-
control bit is one in the address-space-control ele-
ment used to select it and the common-segment bit
is one in the entry. A page-table entry causes a trans-
lation-specification exception if bit 52 in the entry is
one. When enhanced DAT does not apply, a page-
table entry also causes a translation-specification
exception if bit 55 in the entry is one.

A TLB real-space entry may be formed whenever an
attaching real-space designation exists. The entry is
formed using the real-space token origin in the desig-
nation and any value of bits 0-51 of a virtual address.

Use of TLB Entries

The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. A usable TLB entry attaches the
next-lower-level table, if any, and may be usable for a
particular instance of implicit address translation.

A TLB combined region-and-segment-table entry is
in the usable state when all of the following condi-
tions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that would
cause an early specification exception to be rec-
ognized.

3. The TLB combined region-and-segment-table
entry meets either of the following requirements:

a. The common-segment bit is one in the TLB
entry.

b. The table-origin (TO) field in the TLB entry
matches the table- or token-origin field in an
attaching address-space-control element.

A TLB combined region-and-segment-table entry
may be used for a particular instance of implicit
address translation only when the entry is in the
usable state, either the common-segment bit is one
in the TLB entry or the table-origin (TO) field in the
TLB entry matches the table- or token-origin field in
the address-space-control element being used in the
translation, and the region-index and segment-index

fields in the TLB entry match those of the virtual
address being translated. However, the TLB com-
bined region-and-segment-table entry is not used if
the common-segment bit is one in the entry and
either the private-space-control bit is one in the
address-space-control element being used in the
translation or that address-space-control element is a
real-space designation. In both these cases, the TLB
entry is not used even if the table-origin field in the
entry and the table- or token-origin field in the
address-space-control element match.

A TLB page-table entry may be used for a particular
instance of implicit address translation only when the
page-table-origin field in the entry matches the page-
table-origin field in the segment-table entry or TLB
combined region-and-segment-table entry being
used in the translation and the page-index field in the
TLB page-table entry matches the page index of the
virtual address being translated.

A TLB real-space entry may be used for implicit
address translation only when the token-origin field in
the TLB entry matches the table- or token-origin field
in the address-space-control element being used in
the translation and the region-index, segment-index,
and page-index fields in the TLB entry match those
of the virtual address being translated

The operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS and LOAD REAL ADDRESS may be
translated with the use of the TLB contents whether
DAT is on or off, but TLB entries still are formed only
if DAT is on.

Programming Notes:

1. Although contents of a table entry may be copied
into the TLB only when the table entry is both
attached and valid, the copy may remain in the
TLB even when the table entry itself is no longer
attached or valid.

2. No contents can be copied into the TLB when
DAT is off because the table entries at this time
are not attached. In particular, translation of the
operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS and LOAD REAL ADDRESS with
DAT off does not cause entries to be placed in
the TLB.

Conversely, when DAT is on, information may be
copied into the TLB from all translation-table
entries that could be used for address transla-

tion, given the current translation parameters, the
setting of the address-space-control bits, and the
contents of the access registers. The loading of
the TLB does not depend on whether the entry is
used for translation as part of the execution of
the current instruction, and such loading can
occur when the CPU is in the wait state.

3. More than one copy of contents of a table entry
may exist in the TLB. For example, some imple-
mentations may cause a copy of contents of a
valid table entry to be placed in the TLB for the
table origin in each address-space-control ele-
ment by which the entry becomes attached.

Modification of Translation Tables

When an attached and invalid table entry is made
valid and no entry usable for translation of the associ-
ated virtual address is in the TLB, the change takes
effect no later than the end of the current unit of oper-
ation. Similarly, when an unattached and valid table
entry is made attached and no usable entry for the
associated virtual address is in the TLB, the change
takes effect no later than the end of the current unit of
operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries that
qualify for substitution for that entry, an attempt is
made to refer to storage by using a virtual address
requiring that entry for translation, unpredictable
results may occur, to the following extent. The use of
the new value may begin between instructions or dur-
ing the execution of an instruction, including the
instruction that caused the change. Moreover, until
the TLB is cleared of entries that qualify for substitu-
tion for that entry, the TLB may contain both the old
and the new values, and it is unpredictable whether
the old or new value is selected for a particular
access. If both old and new values of a translation
path are present in the TLB, a page-table entry may
be fetched by using one value and placed in the TLB
associated with the other value. If the new value of
the path is a value that would cause an exception,
the exception may or may not cause an interruption
to occur. If an interruption does occur, the result
fields of the instruction may be changed even though
the exception would normally cause suppression or
nullification.

Entries are cleared from the TLB in accordance with
the following rules:

Chapter 3. Storage 3-55

. All entries are cleared from the TLB by the exe-

cution of PURGE TLB or SET PREFIX and by
CPU reset.

All entries may be cleared from all TLBs in the
configuration by the execution of COMPARE
AND SWAP AND PURGE by any of the CPUs in
the configuration, depending on a bit in a general
register used by the instruction.

Selected entries are cleared from all TLBs in the
configuration by the execution of INVALIDATE
DAT TABLE ENTRY or INVALIDATE PAGE
TABLE ENTRY by any of the CPUs in the config-
uration.

Some or all TLB entries may be cleared at times
other than those required by the preceding rules.

Programming Notes:

1.

3-56

Entries in the TLB may continue to be used for
translation after the table entries from which they
have been formed have become unattached or
invalid. These TLB entries are not necessarily
removed unless explicitly cleared from the TLB.

A change made to an attached and valid entry or
a change made to a table entry that causes the
entry to become attached and valid is reflected in
the translation process for the next instruction, or
earlier than the next instruction, unless a TLB
entry qualifies for substitution for that table entry.
However, a change made to a table entry that
causes the entry to become unattached or invalid
is not necessarily reflected in the translation pro-
cess until the TLB is cleared of entries that qual-
ify for substitution for that table entry.

Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part of
the initiation of instruction execution. Conse-
quently, a region-first-translation, region-second-
translation, region-third-translation, segment-
translation, or page-translation exception may be
indicated when a table entry is invalid at the start
of execution even if the instruction would have
validated the table entry it uses and the table
entry would have appeared valid if the instruction
was considered to process the operands one
byte at a time.

A change made to an attached table entry,
except to set the | bit to zero, to set the CO bit of

z/Architecture Principles of Operation

a segment- or page-table entry to one, or to alter
the rightmost byte of a page-table entry, may pro-
duce unpredictable results if that entry is used for
translation before the TLB is cleared of all copies
of contents of that entry. The use of the new
value may begin between instructions or during
the execution of an instruction, including the
instruction that caused the change. When an
instruction, such as MOVE (MVC), makes a
change to an attached table entry, including a
change that makes the entry invalid, and subse-
quently uses the entry for translation, a changed
entry is being used without a prior clearing of the
entry from the TLB, and the associated unpre-
dictability of result values and of exception recog-
nition applies.

Manipulation of attached table entries may cause
spurious table-entry values to be recorded in a
TLB. For example, if changes are made piece-
meal, modification of a valid attached entry may
cause a partially updated entry to be recorded,
or, if an intermediate value is introduced in the
process of the change, a supposedly invalid
entry may temporarily appear valid and may be
recorded in the TLB. Such an intermediate value
may be introduced if the change is made by an
I/O operation that is retried, or if an intermediate
value is introduced during the execution of a sin-
gle instruction.

As another example, if a segment-table entry is
changed to designate a different page table and
used without clearing the TLB, the new page-
table entries may be fetched and associated with
the old page-table origin. In such a case, execu-
tion of INVALIDATE PAGE TABLE ENTRY desig-
nating the new page-table origin will not
necessarily clear the page-table entries fetched
from the new page table.

. To facilitate the manipulation of page tables, the

INVALIDATE PAGE TABLE ENTRY instruction is
provided. This instruction sets the | bit in a page-
table entry to one and clears all TLBs in the con-
figuration of entries formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful for
setting the | bit to one in a page-table entry and
causing TLB copies of the entry to be cleared
from the TLB of each CPU in the configuration.
The following aspects of the TLB operation
should be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the program-

ming notes for INVALIDATE PAGE TABLE
ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY should
be executed before making any change to a
page-table entry other than changing the
rightmost byte; otherwise, the selective-
clearing portion of INVALIDATE PAGE
TABLE ENTRY may not clear the TLB copies
of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALIDATE
PAGE TABLE ENTRY does not necessarily
clear the TLB of any combined region-and-
segment-table entry designating the page
table. When it is desired to invalidate and
clear the TLB of a combined region-and-seg-
ment-table entry, the rules in note 5 below
must be followed.

c. When a large number of page-table entries
are to be invalidated at a single time, the
overhead involved in using COMPARE AND
SWAP AND PURGE (one that purges the
TLB), INVALIDATE DAT TABLE ENTRY, or
PURGE TLB and in following the rules in
note 5 below may be less than in issuing
INVALIDATE PAGE TABLE ENTRY for each
page-table entry.

5. Manipulation of table entries should be in accor-

dance with the following rules. If these rules are
complied with, translation is performed as if the
table entries from real or absolute storage were
always used in the translation process.

a. A valid table entry must not be changed
while it is attached to any CPU and may be
used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE
PAGE TABLE ENTRY or INVALIDATE DAT
TABLE ENTRY, (2) alter bits 56-63 of a page-
table entry, or (3) make a change by means
of a COMPARE AND SWAP AND PURGE
instruction that purges the TLB.

b. When any change is made to an attached
and valid or unattached or invalid table entry
other than a change to bits 56-63 of a page-
table entry, each CPU which may have a TLB
entry formed from that entry must be caused
to purge its TLB after the change occurs and
prior to the use of that entry for implicit trans-
lation by that CPU. (Note that a separate
purge is unnecessary if the change was

made by using INVALIDATE DAT TABLE
ENTRY, INVALIDATE PAGE TABLE ENTRY,
or a COMPARE AND SWAP AND PURGE
instruction that purges the TLB.) In the case
when the table entry is attached and valid,
this rule applies when it is known that a pro-
gram is not being executed that may require
the entry for translation.

c. When any change is made to an invalid table
entry in such a way as to allow intermediate
valid values to appear in the entry, each CPU
to which the entry is attached must be
caused to purge its TLB after the change
occurs and prior to the use of the entry for
implicit address translation by that CPU.

d. When any change is made to an offset or
length specified for a table, each CPU which
may have a TLB entry formed from a table
entry that no longer lies within its table must
be caused to purge its TLB after the change
occurs and prior to the use of the table for
implicit translation by that CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate valid
values, the TLB need not be cleared in a CPU
which does not have any TLB entries formed
from that entry. Similarly, when an invalid region-
table or segment-table entry is made valid with-
out introducing intermediate valid values, the
TLB need not be cleared in a CPU which does
not have any TLB entries formed from that vali-
dated entry and which does not have any TLB
entries formed from entries in a page table
attached by means of that validated entry.

The execution of PURGE TLB, COMPARE AND
SWAP AND PURGE, or SET PREFIX may have
an adverse effect on the performance of some
models. Use of these instructions should, there-
fore, be minimized in conformance with the
above rules.

. In addition to the constraints described in pro-

gramming note 3 on page 3-56, the following
considerations are in effect when enhanced DAT
applies:

a. When the STE-format and ACCF-validity
controls are both one, it is unpredictable
whether the CPU inspects the access-con-
trol bits and the fetch-protection bit in the
segment-table entry or in the storage key of
the corresponding 4K-byte block for any

Chapter 3. Storage 3-57

given key-controlled-protection check.
Therefore, the program should ensure that
the access-control bits and fetch-protection
bit in the segment-table entry are identical to
the respective fields in all 256 storage keys
for the constituent 4K-byte blocks of the seg-
ment, before setting the invalid bit in the STE
to zero.

Prior to changing the ACCF-validity control,
the access-control bits, or the fetch protec-
tion bit in the segment-table entry, and prior
to changing the access-control bits or fetch-
protection bit in any of the segment’s 256
storage keys, the program should first set the
invalid bit to one in the segment-table entry
and clear all entries in all TLBs in the config-
uration, as described previously in this sec-
tion.

b. Prior to setting the change-recording over-
ride to zero in a segment-table entry, the pro-
gram should set the invalid bit to one in the
segment-table entry, and clear all entries in
all TLBs in the configuration (for example, by
using INVALIDATE DAT TABLE ENTRY).

c. Prior to setting the change-recording over-
ride to zero in page-table entry, the program
should set the invalid bit to one in the page-
table entry, and clear all entries in all TLBs in
the configuration (for example, by using
INVALIDATE PAGE TABLE ENTRY).

Failure to observe these procedures may lead to
unpredictable results, possibly including a
delayed-access-exception machine-check or fail-
ure to record a change.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer to storage
are instruction or logical addresses and are subject
to implicit translation when DAT is on. Analogously,
the corresponding addresses indicated to the pro-
gram on an interruption or as the result of executing
an instruction are instruction or logical addresses.
The operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS, and STORE

3-58

z/Architecture Principles of Operation

REAL ADDRESS is explicitly translated, regardless
of whether the PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D fields
of an instruction but that are not used to address
storage. This includes operand addresses in LOAD
ADDRESS, LOAD ADDRESS EXTENDED, MONI-
TOR CALL, and the shifting instructions. This also
includes the addresses in control registers 10 and 11
designating the starting and ending locations for
PER.

With the exception of INSERT VIRTUAL STORAGE
KEY and TEST PROTECTION, the addresses explic-
itly designating storage keys (operand addresses in
SET STORAGE KEY EXTENDED, INSERT STOR-
AGE KEY EXTENDED, and RESET REFERENCE
BIT EXTENDED) are real addresses. Similarly, the
addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to transfer
data and to refer to CCWs, IDAWSs, or MIDAWSs are
absolute addresses.

The handling of storage addresses associated with
DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
“Address Types” on page 3-4. Prefixing, when pro-
vided, is applied after the address has been trans-
lated by means of the dynamic-address-translation
facility. For a description of prefixing, see “Prefixing”
on page 3-17.

Handling of Addresses

The handling of addresses is summarized in
Figure 3-12. This figure lists all addresses that are
encountered by the program and specifies the
address type.

Assigned Storage Locations

Figure 3-13 on page 3-66 shows the format and
extent of the assigned locations in storage. The loca-
tions are used as follows.

Virtual Addresses

* Address of storage operand for INSERT VIRTUAL STORAGE KEY

* Operand address in LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS, and STORE REAL ADDRESS
* Addresses of storage operands for MOVE TO PRIMARY and MOVE TO SECONDARY

» Address stored in the doubleword at real location 168 on a program interruption for ASCE-type, region-first-translation,
region-second-translation, region-third-translation, segment-translation, or page-translation exception
Linkage-stack-entry address in control register 15

Backward stack-entry address in linkage-stack header entry

* Forward-section-header address in linkage-stack trailer entry

* Trap-control-block address in dispatchable-unit-control table

» Trap-save-area address and trap-program address in trap control block

Instruction Addresses

* Instruction address in PSW

* Branch address

* Target of EXECUTE and EXECUTE RELATIVE LONG

* Address stored in the doubleword at real location 152 on a program interruption for PER

* Address placed in general register by BRANCH AND LINK, BRANCH AND SAVE, BRANCH AND SAVE AND SET
MODE, BRANCH AND STACK, BRANCH IN SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, BRANCH
RELATIVE AND SAVE LONG, and PROGRAM CALL

* Address used in general register by BRANCH AND STACK

¢ Address placed in general register by BRANCH AND SET AUTHORITY executed in reduced-authority state

Logical Addresses

* Addresses of storage operands for instructions not otherwise specified

» Address placed in general register 1 by EDIT AND MARK and TRANSLATE AND TEST

* Addresses in general registers updated by MOVE LONG, MOVE LONG EXTENDED, COMPARE LOGICAL LONG, and
COMPARE LOGICAL LONG EXTENDED

* Addresses in general registers updated by CHECKSUM, COMPARE AND FORM CODEWORD, and UPDATE TREE

* Address for TEST PENDING INTERRUPTION when the second-operand address is nonzero

¢ Address of parameter list of RESUME PROGRAM

Real Addresses

* Address of storage key for INSERT STORAGE KEY EXTENDED, and RESET REFERENCE BIT EXTENDED

* Address of storage key for SET STORAGE KEY EXTENDED (when the enhanced-DAT facility is not installed, or when
the enhanced-DAT facility is installed but the multiple-block control is zero)

* Address of second operand for PERFORM FRAME MANAGEMENT FUNCTION when frame-size code is 0.

¢ Address of storage operand for LOAD USING REAL ADDRESS, STORE USING REAL ADDRESS, and TEST BLOCK

* The translated address generated by LOAD REAL ADDRESS and STORE REAL ADDRESS

* Page-frame real address in page-table entry

» Trace-entry address in control register 12

» ASN-first-table origin in control register 14

* ASN-second-table origin in ASN-first-table entry

 Authority-table origin in ASN-second-table entry, except when used by access-register translation

e Linkage-table origin in primary ASN-second-table entry

* Entry-table origin in linkage-table entry

* Dispatchable-unit-control-table origin in control register 2

* Primary-ASN-second-table-entry origin in control register 5

* Base-ASN-second-table-entry origin and subspace-ASN-second-table-entry origin in dispatchable-unit control table

* ASN-second-table-entry address in entry-table entry and access-list entry

Figure 3-12. Handling of Addresses (Part 1 of 2).

Chapter 3. Storage 3-59

Permanently Assigned Real Addresses

¢ Address of the doubleword into which TEST PENDING INTERRUPTION stores when the second-operand address is
zero

» Addresses of PSWs, interruption codes, and the associated information used during interruption

* Addresses used for machine-check logout and save areas

¢ Address of STORE FACILITY LIST operand

Addresses which Are Unpredictably Real or Absolute

* Region-first-table origin, region-second-table origin, region-third-table origin, or segment-table origin in control registers
1,7, and 13, in access-register-specified address-space-control element, and in region-first-table entry, region-second-
table entry, or region-third-table entry

* Page-table origin in segment-table entry and in INVALIDATE PAGE TABLE ENTRY

* Address of segment-table entry or page-table entry provided by LOAD REAL ADDRESS

* Address of region-first-table entry, region-second-table entry, region-third-table entry, segment-table entry, or
page-table entry provided by LOAD PAGE-TABLE-ENTRY ADDRESS

* The dispatchable-unit or primary-space access-list origin and the authority-table origin (in the ASTE designated by the
ALE used) used by access-register translation

Absolute Addresses

Prefix value

Channel-program address in ORB

Data address in CCW

IDAW address in a CCW specifying indirect data addressing

MIDAW address in a CCW specifying modified indirect data addressing

CCW address in a CCW specifying transfer in channel

Data address in IDAW

Data address in MIDAW

Measurement-block origin specified by SET CHANNEL MONITOR

Address limit specified by SET ADDRESS LIMIT

Addresses used by the store-status-at-address SIGNAL PROCESSOR order

Address of storage key for SET STORAGE KEY EXTENDED (when the enhanced-DAT facility is installed and the
multiple-block control is one)

* Address of second operand for PERFORM FRAME MANAGEMENT FUNCTION when frame-size code is 1.
* Failing-storage address stored in the doubleword at real location 248

e CCW address in SCSW

Permanently Assigned Absolute Addresses

¢ Addresses used for the store-status function
* Addresses of PSW and first two CCWs used for initial program loading

Addresses Not Used to Reference Storage

* PER starting address in control register 10

* PER ending address in control register 11

* Address stored in the doubleword at real location 176 for a monitor event

¢ Address in shift instructions and other instructions specified not to use the address to reference storage
* Real-space token origin in real-space designation

Figure 3-12. Handling of Addresses (Part 2 of 2).

128-131 (80-83 hex). Real Address ing alert, the parameter associated with the inter-

) i ruption is stored at locations 128-131.
External-Interruption ~ Parameter. During an

external interruption due to service signal or tim-

3-60 z/Architecture Principles of Operation

132-133(84-85hex) Real Address

CPU Address: During an external interruption
due to malfunction alert, emergency signal, or
external call, the CPU address associated with
the source of the interruption is stored at loca-
tions 132-133. For all other external-interruption

conditions, zeros are stored at locations
132-133.
134-135(86-87 hex) Real Address

External-Interruption Code: During an external
interruption, the interruption code is stored at
locations 134-135.

136-139(88-8Bhex) Real Address

Supervisor-Call-Interruption Identification: Dur-
ing a supervisor-call interruption, the instruction-
length code is stored in bit positions 5 and 6 of
location 137, and the interruption code is stored
at locations 138-139. Zeros are stored at location
136 and in the remaining bit positions of location
137.

140-143 (8C-8F hex).............. Real Address

Program-Interruption Identification: During a pro-
gram interruption, the instruction-length code is
stored in bit positions 5 and 6 of location 141,
and the interruption code is stored at locations
142-143. Zeros are stored at location 140 and in
the remaining bit positions of location 141.

144-147 (90-93 hex) Real Address

Data-Exception Code (DXC): During a program
interruption due to a data exception, the data-
exception code is stored at location 147, and
zeros are stored at locations 144-146. The DXC
is described in “Data-Exception Code (DXC)” on
page 6-14.

148-149 (94-95hex) Real Address

Monitor-Class Number. During a program inter-
ruption due to a monitor event, the monitor-class
number is stored at location 149, and zeros are
stored at location 148.

150-151 (96-97 hex) Real Address

PER Code: During a program interruption due to
a PER event the PER code is stored in bit posi-
tions 0-7 of locations 150-151, and other infor-
mation is or may be stored as described in
“Identification of Cause” on page 4-26.

152-159 (98-9F hex) Real Address

PER Address: During a program interruption due
to a PER event, the PER address is stored at
locations 152-159.

160 (AOhex)..................... Real Address

Exception Access Identification: During a pro-
gram interruption due to an ASCE-type, region-
first-translation, region-second-translation,
region-third-translation, segment-translation, or
page-translation exception, an indication of the
address space to which the exception applies
may be stored at location 160. If the CPU was in
the access-register mode and either (a) the
access was an instruction fetch, including a fetch
of the target of an execute-type instruction (EXE-
CUTE or EXECUTE RELATIVE LONG), or
(b) the access was to the second operand of the
relative-long form of COMPARE, COMPARE
HALFWORD, COMPARE LOGICAL, COMPARE
LOGICAL HALFWORD, LOAD, LOAD HALF-
WORD, LOAD LOGICAL, LOAD LOGICAL
HALFWORD, STORE or STORE HALFWORD,
then zeros are stored at location 160. If the
access was a storage-operand reference that
used an AR-specified address-space-control ele-
ment, the number of the access register used is
stored in bit positions 4-7 of location 160, and
zeros are stored in bit positions 0-3. (In either of
the two cases described so far, storing at loca-
tion 160 occurs regardless of the value stored in
bit positions 62 and 63 of real locations
168-175.) The contents of location 160 are
unpredictable if the access did not use an AR-
specified address-space-control element.

During a program interruption due to an ALEN-
translation, ALE-sequence, ASTE-validity, ASTE-
sequence, or extended-authority exception rec-
ognized during access-register translation, the
number of the access register used is stored in
bit positions 4-7 of location 160, and zeros are
stored in bit positions 0-3. During a program
interruption due to an ASTE-validity or ASTE-
sequence exception recognized during a sub-
space-replacement operation, all zeros are
stored at location 160.

During a program interruption due to an ASTE-
instance exception recognized due to use of the
ASN-and-LX-reuse facility, (1) a one is stored in
bit position 2, and zeros are stored in bit posi-
tions 0, 1, and 3-7, if the exception was recog-

Chapter 3. Storage 3-61

3-62

nized after primary ASN translation in
PROGRAM TRANSFER WITH INSTANCE or
PROGRAM RETURN, or (2) a one is stored in bit
position 3, and zeros are stored in bit positions
0-2 and 4-7, if the exception was recognized
after secondary ASN translation in SET SEC-
ONDARY ASN WITH INSTANCE or PROGRAM
RETURN.

During a program interruption due to a protection
exception, information is stored at location 160
as described in “Suppression on Protection” on
page 3-14.

161 (A1hex)..................... Real Address

PER Access Identification: During a program
interruption due to a PER storage-alteration
event, an indication of the address space to
which the event applies may be stored at location
161. If the access used an AR-specified address-
space-control element, the number of the access
register used is stored in bit positions 4-7 of loca-
tion 161, and zeros are stored in bit positions
0-3. The contents of location 161 are unpredict-
able if the access did not use an AR-specified
address-space-control element.

Programming Note: The PER ASCE identifica-
tion may be inspected to determine whether the
PER storage-alteration event used an AR-speci-
fied ASCE. See “PER ASCE Identification (Al)”
on page 4-27 for further details.

162 (A2hex). Real Address

Operand Access Identification. When enhanced
DAT does not apply, and a program interruption
due to a page-translation exception is recognized
by the MOVE PAGE instruction, the contents of
the R, field of the instruction are stored in bit
positions 0-3 of location 162, and the contents of
the R, field are stored in bit positions 4-7. If the
page-translation exception was recognized dur-
ing the execution of an instruction other than
MOVE PAGE, or if an ASCE-type, region-first-
translation, region-second-translation, region-
third-translation, or segment-translation excep-
tion was recognized, the contents of location 162
are unpredictable.

When enhanced DAT applies, and a program
interruption due to a region-first-translation,
region-second-translation, region-third-transla-
tion, segment-translation, or page-translation

z/Architecture Principles of Operation

exception is recognized by the MOVE PAGE
instruction, the contents of the R, and R, fields
are stored in location 162 as described above. If
any of the exceptions listed in the preceding sen-
tence was recognized during the execution of an
instruction other than MOVE PAGE, or if an
ASCE-type exception was recognized, the con-
tents of location 162 are unpredictable.

163 (A3hex) Absolute Address

Store-Status Architectural-Mode Identification:
During the execution of the store-status opera-
tion, zeros are stored in bit positions 0-6 of loca-
tion 163, and a one is stored in bit position 7. A
zero stored in bit position 7 indicates the
ESA/390 architectural mode, and a one indicates
the z/Architecture architectural mode.

163 (A3hex) Real Address

Machine-Check Architectural-Mode Identifica-
tion: During a machine-check interruption, zeros
are stored in bit positions 0-6 of location 163, and
a one is stored in bit position 7. A zero stored in
bit position 7 indicates the ESA/390 architectural
mode, and a one indicates the z/Architecture
architectural mode.

168-175 (A8-AF hex).............. Real Address

Translation-Exception Identification: During a
program interruption due to an ASCE-type,
region-first-translation, region-second-transla-
tion, region-third-translation, segment-transla-
tion, or page-translation exception, bits 0-51 of
the virtual address causing the exception are
stored in bit positions 0-51 of locations 168-175.
This address is sometimes referred to as the
translation-exception address. Bits 52-56 of loca-
tions 168-175 are unpredictable.

When enhanced DAT does not apply, and the
exception was a page-translation exception that
was recognized during the execution of MOVE
PAGE, bit 61 of locations 168-175 is set to one. If
the exception was a page-translation exception
recognized during the execution of an instruction
other than MOVE PAGE, bit 61 is set to zero. If
the exception was an ASCE-type, region-first-
translation, region-second-translation, region-
third-translation, or segment-translation excep-
tion, bit 61 of locations 168-175 is unpredictable.
See the definition of real location 162 for related
information.

When enhanced DAT applies, and the exception
was a region-first-, region-second, region-third-,
segment-, or page-translation exception that was
recognized during the execution of MOVE PAGE,
bit 61 of locations 168-175 is set to one. If the
exception was a region-first-, region-second,
region-third-, segment-, or page-translation
exception recognized during the execution of an
instruction other than MOVE PAGE, bit 61 is set
to zero. If the exception was an ASCE-type
exception, bit 61 of locations 168-175 is unpre-
dictable. See the definition of real location 162
for related information.

Bits 62 and 63 of locations 168-175 are set to
identify the address-space-control element
(ASCE) used in the translation, as follows:

Bit Bit

62 63 Meaning

0 0 Primary ASCE was used.

0 1 CPU was in the access-register mode, and
either the access was an instruction fetch or it
was a storage-operand reference that used
an AR-specified ASCE (the access was not
an implicit reference to the linkage stack).
The exception access id, real location 160,
can be examined to determine the ASCE
used. However, if the primary, secondary, or
home ASCE was used, bits 62 and 63 may
be set to 00, 10, or 11, respectively, instead
of 01.

1 0 Secondary ASCE was used.

1 1 Home ASCE was used (includes the case of
an implicit reference to the linkage stack).

The CPU may avoid setting bits 62 and 63 to 01
by recognizing that the access was an instruction
fetch, that access-list-entry token 00000000 or
00000001 hex was used, or that the access-list-
entry token designated, through an access-list
entry, an ASN-second-table entry containing an
ASCE equal to the primary ASCE, secondary
ASCE, or home ASCE.

During a program interruption due to an AFX-
translation, ASX-translation, primary-authority, or
secondary-authority exception, the ASN being
translated is stored at locations 174 and 175,
zeros are stored at locations 172 and 173, and
the contents of locations 168-171 remain
unchanged.

During a program interruption due to a space-
switch event, an identification of the old instruc-
tion space is stored at locations 174 and 175, the

old instruction-space space-switch-event-control
bit is placed in bit position 0 and zeros are placed
in bit positions 1-15 of locations 172 and 173,
and the contents of locations 168-171 remain
unchanged. The identification and bit stored are
as follows:

e |f the CPU was in the primary-space, sec-
ondary-space, or access-register mode
before the operation, the old PASN, bits
48-63 of control register 4 before the opera-
tion, is stored at locations 174 and 175, and
the old primary space-switch-event-control
bit, bit 57 of control register 1 before the
operation, is placed in bit position 0 of loca-
tions 172 and 173.

e |If the CPU was in the home-space mode
before the operation, zeros are stored at
locations 174 and 175, and the home space-
switch-event-control bit, bit 57 of control reg-
ister 13, is placed in bit position 0 of loca-
tions 172 and 173.

During a program interruption due to an EX-
translation or LX-translation exception recog-
nized by PROGRAM CALL when ASN-and-LX
reuse is not installed or is not enabled by a one
value of the ASN-and-LX-reuse control in control
register 0, bits 44-63 of the second-operand
address used by PROGRAM CALL (a 20-bit PC
number), with 12 zeros appended on the left, are
stored at locations 172-175, and the contents of
locations 168-171 remain unchanged.

During a program interruption due to an EX-
translation, LFX-translation, LSTE-sequence, or
LSX-translation exception recognized by PRO-
GRAM CALL when ASN-and-LX reuse is
installed and enabled and bit 44 of the second-
operand address used by PROGRAM CALL is
zero, bits 44-63 of the second-operand address
(a 20-bit PC number), with 12 zeros appended
on the left, are stored at locations 172-175. If bit
44 of the second-operand address is one, bits
32-63 of the address (a 32-bit PC number) are
stored at locations 172-175. In either of these
cases, the contents of locations 168-171 remain
unchanged.

During a program interruption due to a protection
exception, information is stored at locations
168-175 as described in “Suppression on Protec-
tion” on page 3-14.

Chapter 3. Storage 3-63

176-183 (BO-B7 hex) Real Address

Monitor Code: During a program interruption due
to a monitor event, the monitor code is stored at
locations 176-183.

184-187 (B8-BBhex).............. Real Address

Subsystem-Identification Word: During an /O
interruption, the subsystem-identification word is
stored at locations 184-187.

188-191 (BC-BF hex).............. Real Address

I/O-Interruption Parameter. During an |/O inter-
ruption, the interruption parameter from the
associated subchannel is stored at locations
188-191.

192-195 (CO-C3hex) Real Address

I/O-Interruption-ldentification Word: During an
I/O interruption, the I/O-interruption-identification
word, which further identifies the source of the
I/O interruption, is stored at locations 192-195.

200-203 (C8-CBhex).............. Real Address

STFL Facility List. The STORE FACILITY LIST
instruction stores information at real locations
200-203. The information describes which facili-
ties are provided by the configuration. The infor-
mation stored is identical in format to the first 32
bits stored by the STORE FACILITY LIST
EXTENDED instruction. Figure 4-18, “Assigned
Facility Bits” on page 4-65 shows the meanings
of the assigned facility bits.

232-239 (E8-EF hex) Real Address

Machine-Check-Interruption Code: During a
machine-check interruption, the machine-check-
interruption code is stored at locations 232-239.

244-247 (F4-F7hex) Real Address

External-Damage Code: During a machine-
check interruption due to certain external-dam-
age conditions, depending on the model, an
external-damage code may be stored at loca-
tions 244-247.

248-255 (F8-FFhex) Real Address

Failing-Storage Address: During a machine-
check interruption, a 64-bit failing-storage
address may be stored at locations 248-255.

3-64

z/Architecture Principles of Operation

272-279 (110-117hex) Real Address

Breaking-Event Address: If the PER-3 facility is
installed, then, during a program interruption, the
contents of the breaking-event-address register
are stored in locations 272-279. If the breaking-
event-address-recording facility is not installed,
this location remains unchanged.

288-303 (120-12F hex) Real Address

Restart Old PSW: The current PSW is stored as
the old PSW at locations 288-303 during a
restart interruption.

304-319 (130-13F hex) Real Address

External Old PSW: The current PSW is stored as
the old PSW at locations 304-319 during an
external interruption.

320-335 (140-14F hex) Real Address

Supervisor-Call Old PSW: The current PSW is
stored as the old PSW at locations 320-335 dur-
ing a supervisor-call interruption.

336-351 (150-15F hex) Real Address

Program Old PSW: The current PSW is stored as
the old PSW at locations 336-351 during a pro-
gram interruption.

352-367 (160-16F hex) Real Address

Machine-Check OIld PSW: The current PSW is
stored as the old PSW at locations 352-367 dur-
ing a machine-check interruption.

368-383 (170-17F hex) Real Address

Input/Output Old PSW: The current PSW is
stored as the old PSW at locations 368-383 dur-
ing an 1/O interruption.

416-431 (1A0-1AF hex). Real Address

Restart New PSW: The new PSW is fetched from
locations 416-431 during a restart interruption.

432-447 (1BO-1BF hex)............ Real Address

External New PSW: The new PSW is fetched
from locations 432-447 during an external inter-
ruption.

448-463 (1CO-1CF hex). Real Address

Supervisor-Call New PSW: The new PSW is
fetched from locations 448-463 during a supervi-
sor-call interruption.

464-479 (1DO-1DF hex). Real Address

Program New PSW: The new PSW is fetched
from locations 464-479 during a program inter-
ruption.

480-495 (1EO-1EF hex)............ Real Address

Machine-Check New PSW: The new PSW is
fetched from locations 480-495 during a
machine-check interruption.

496-511 (1FO-1FFhex) Real Address

Input/Output New PSW: The new PSW is fetched
from locations 496-511 during an I/O interrup-
tion.

4544-4607 (11CO-11FF hex)........ Real Address

Available for Programming: Locations 4544-4607
are available for use by programming.

4608-4735 (1200-127F hex) Absolute Address

Store-Status Floating-Point-Register Save Area:
During the execution of the store-status opera-
tion, the contents of the floating-point registers
are stored at locations 4608-4735.

4608-4735 (1200-127F hex) Real Address

Machine-Check Floating-Point-Register Save
Area: During a machine-check interruption, the
contents of the floating-point registers are stored
at locations 4608-4735.

4736-4863 (1280-12FF hex) Absolute Address

Store-Status General-Register Save Area: Dur-
ing the execution of the store-status operation,
the contents of the general registers are stored
at locations 4736-4863.

4736-4863 (1200-12FF hex) Real Address

Machine-Check General-Register Save Area:
During a machine-check interruption, the con-
tents of the general registers are stored at loca-
tions 4736-4863.

4864-4879 (1300-130F hex). Absolute Address

Store-Status PSW Save Area: During the execu-
tion of the store-status operation, the contents of

the current PSW are stored at locations
4864-4879.
4864-4879 (1300-130F hex)......... Real Address

Fixed-Logout Area: Depending on the model,
logout information may be stored at locations
4864-4879 during a machine-check interruption.

4888-4891 (1318-131B hex). Absolute Address

Store-Status Prefix Save Area: During the execu-
tion of the store-status operation, the contents of

the prefix register are stored at locations
4888-4891.
4892-4895 (131C-131F hex). Absolute Address

Store-Status Floating-Point-Control-Register
Save Area: During the execution of the store-sta-
tus operation, the contents of the floating-point

control register are stored at locations
4892-4895.
4892-4895 (131C-131F hex). Real Address

Machine-Check Floating-Point-Control-Register
Save Area: During a machine-check interruption,
the contents of the floating-point control register
are stored at locations 4892-4895.

4900-4903 (1324-1327 hex) Absolute Address

Store-Status TOD-Programmable-Register Save
Area: During the execution of the store-status
operation, the contents of the TOD programma-
ble register are stored at locations 4900-4903.

4900-4903 (1324-1327 hex) Real Address

Machine-Check TOD-Programmable-Register
Save Area: During a machine-check interruption,
the contents of the TOD programmable register
are stored at locations 4900-4903.

4904-4911 (1328-132F hex). Absolute Address

Store-Status CPU-Timer Save Area: During the
execution of the store-status operation, the con-
tents of the CPU timer are stored at locations
4904-4911.

Chapter 3. Storage 3-65

4904-4911 (1328-132F hex) Real Address

Machine-Check CPU-Timer Save Area: During a
machine-check interruption, the contents of the
CPU timer are stored at locations 4904-4911.

...... Absolute Address

4913-4919 (1331-1337 hex)

Store-Status Clock-Comparator Save Area: Dur-
ing the execution of the store-status operation,
the contents of bit positions 0-55 of the clock
comparator are stored at locations 4913-4919.
When this store occurs, zeros are stored at loca-
tion 4912.

4913-4919 (1331-1337 hex) Real Address

Machine-Check Clock-Comparator Save Area:
During a machine-check interruption, the con-
tents of bit positions 0-55 of the clock comparator
are stored at locations 4913-4919. When this
store occurs, zeros are stored at location 4912.

4928-4991 (1340-137F hex) Absolute Address

Store-Status Access-Register Save Area: During
the execution of the store-status operation, the
contents of the access registers are stored at

contents of the control registers are stored at
locations 4992-5119.

4992-5119 (1380-13FF hex) Real Address

Machine-Check Control-Register Save Area:
During a machine-check interruption, the con-
tents of the control registers are stored at loca-
tions 4992-5119.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with a
region-translation, segment-translation, or page-
translation exception in another address space.
The access registers used to cause these condi-
tions in such a case are different. In order to
identify both access registers, two access identi-
fications, namely the exception access identifica-
tion and the PER access identification, are
provided.

- 2. The store-status and machine-check architec-
locations 4928-4991. tural-mode identifications at absolute and real
4928-4991 (1340'137F heX) Real Address locations 163, reSpeCtiver, indicate that the CPU
is in the z/Architecture architectural mode. When
Machine-Check Access-Register Save Area: z/Architecture is installed on the CPU but the
During a machine-check interruption, the con- CPU is in the ESA/390 mode, the store-status
tents of the access registers are stored at loca- and machine-check-interruption operations store
tions 4928-4991. zero at location 163.
4992-5119 (1380-13FF hex) Absolute Address
Store-Status Control-Register Save Area: During
the execution of the store-status operation, the
Hex Dec Fields
0 0
4 4
/o P /
78 120
7C 124
80 128 External-Interruption Parameter
84 132 CPU Address External-Interruption Code
88 136 (00 0000O00O0O0O0OO|ILC|O SVC-Interruption Code
8C 140 |0 000 0000O0O0O0GO0O|IC|O Program-Interruption Code
90 144 Data-Exception Code
94 148 Monitor-Class Number PER Code | AMD [A
98 152
9C 156 PER Address

Figure 3-13. Assigned Storage Locations (Part 1 of 4).

3-66

z/Architecture Principles of Operation

Hex Dec Fields

A0 160 Exception Access ID PERAccessID | Operand Access ID | SS/MC Arch.-Mode ID
A4 164

:g 132 Translation-Exception Identification
gg 1 ;g Monitor Code

B8 184 Subsystem-Identification Word
BC 188 I/O-Interruption Parameter
Co 192 I/O-Interruption-ldentification Word
C4 196

C8 200 STFL Facility List

CC 204

DO 208

D4 212

D8 216

DC 220

EO 224

E4 228

IIEE?: 222 Machine-Check Interruption Code
FO 240

F4 244 External-Damage Code
:::g 222 Failing-Storage Address
100 256

104 260

108 264
10C 268

1 12 2;2 Breaking-Event Address
118 280
11C 284

120 288

124 292

128 296 Restart Old PSW
12C 300

130 304

::2; g?g External Old PSW
13C 316

140 320

:::g ggg Supervisor-Call Old PSW
14C 332

150 336

154 340

158 344 Program Old PSW
15C 348

Figure 3-13. Assigned Storage Locations (Part 2 of 4).

Chapter 3. Storage 3-67

Hex Dec Fields

160 352

123 ggg Machine-Check Old PSW
16C 364

170 368

1;: g;g Input/Output Old PSW
17C 380

180 384

184 388

188 392

18C 396

190 400

194 404

198 408

19C 412

1A0 416

1A4 420

1A8 424 Restart New PSW
1AC 428

1BO 432

1 gg jjg External New PSW
1BC 444

1CO 448

12; 3:2 Supervisor-Call New PSW
1CC 460

1DO 464

1 Bg 332 Program New PSW
1DC 476

1EQ 480

j| Eg :Zg Machine-Check New PSW
1EC 492

1FO0 496

j| Eg 282 Input/Output New PSW
1FC 508

200 512

204 516

FF8 4088

FFC 4092

1000 4096

: : (448 bytes)

11BC 4540

Figure 3-13. Assigned Storage Locations (Part 3 of 4).

3-68

z/Architecture Principles of Operation

Hex Dec Fields
11C0 4544
! 1:04 45:48 Available for Use by Programming /
11F8 4600 (64 bytes)
11FC 4604
1200 4608
1204 4612 Store-Status or Machine-Check
: : Floating-Point-Register Save Area /
1278 4728 (128 bytes)
127C 4732
1280 4736
1284 4740 Store-Status or Machine-Check
: : General-Register Save Area /
12F8 4856 (128 bytes)
12FC 4860
1300 4864
1282 2232 Store-Status PSW Save Area; or Fixed Logout Area
130C 4876
1310 4880
1314 4884
1318 4888 Store-Status Prefix Save Area
131C 4892 Store-Status or Machine-Check Floating-Point-Control-Register Save Area
1320 4896
1324 4900 Store-Status or Machine-Check TOD-Programmable-Register Save Area
11 gsg jggg Store-Status or Machine-Check CPU-Timer Save Area
1222 2312 | Store-Status or Machine-Check Clock-Comparator Bits 0-55 Save Area
1338 4920
133C 4924
1340 4928
1344 4932 Store-Status or Machine-Check
: : Access-Register Save Area /
1378 4994 (64 bytes)
137C 4998
1380 4992
1384 4996 Store-Status or Machine-Check
: : Control-Register Save Area /
13F8 5112 (128 bytes)
13FC 5116

Figure 3-13. Assigned Storage Locations (Part 4 of 4).

Chapter 3. Storage 3-69

3-70 z/Architecture Principles of Operation

Chapter 4. Control

Stopped, Operating, Load, and Check-Stop

States 4-1
Stopped State L. 4-2
OperatingState 4-2
LoadState........... i, 4-2
Check-Stop State. 4-3

Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers. 4-7
Tracing. . ..o 4-9
Control-Register Allocation 4-11
TraceEntries. 4-12
Operation. 4-22
Program-Event Recording. 4-23
PER Instruction-Fetching Nullification 4-23
Control-Register Allocation and Address-
Space-Control Element 4-23
Operation. 4-25
Identification of Cause 4-26
Priority of Indication.................. 4-28
Storage-Area Designation. 4-30
PEREvents.......... 4-30
Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32
Indication of PER Events Concurrently with
Other Interruption Conditions 4-32
Breaking-Event-Address Recording 4-35
Breaking-Event-Address Register 4-36
Execution-Break Instructions. 4-36
Timing 4-37
Time-of-Day Clock. 4-37
Format....... 4-37
States. 4-37

Changesin Clock State. 4-38
Setting and Inspecting the Clock. 4-39
TOD Programmable Register 4-40
TOD-Clock Synchronization 4-42
TimingMode 4-42
TimingState 4-43
STP Clock Source State 4-43
TOD-Clock Steering 4-43
TOD-Clock Steering Overview 4-44
TOD-Offset-Update Events. 4-46
Episodes......... 4-46
TOD-Clock-Steering Registers 4-46
Clock Comparator. 4-47
CPUTImMer ... 4-48
Externally Initiated Functions 4-49
Resets........ .. i 4-49
CPUReset 4-52
Initial CPUReset. 4-53
SubsystemReset 4-53
ClearReset. 4-53
Power-OnReset..................... 4-54
Initial Program Loading. 4-55
CCW-Type IPLt 4-55
Store Status L. 4-55
Multiprocessing. 4-56
Shared Main Storage 4-56
CPU-Address Identification. 4-56
CPU Signaling and Response 4-57
Signal-ProcessorOrders. 4-57
Conditions Determining Response 4-61
Conditions Precluding Interpretation of the
OrderCode.............. ...t 4-61
StatusBits. oL 4-62
Facility Indications. 4-65

This chapter describes in detail the facilities for con-
trolling, measuring, and recording the operation of
one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States

The stopped, operating, load, and check-stop states
are four mutually exclusive states of the CPU. When
the CPU is in the stopped state, instructions and

© Copyright IBM Corp. 1990-2008

interruptions, other than the restart interruption, are
not executed. In the operating state, the CPU exe-
cutes instructions and takes interruptions, subject to
the control of the program-status word (PSW) and
control registers, and in the manner specified by the
setting of the operator-facility rate control. The CPU
is in the load state during the initial-program-loading
operation of ESA/390. The CPU enters the check-
stop state only as the result of machine malfunctions.

A change between these four CPU states can be

effected by use of the operator facilities or by accep-
tance of certain SIGNAL PROCESSOR orders

4-1

addressed to that CPU. The states are not controlled
or identified by bits in the PSW. The stopped, load,
and check-stop states are indicated to the operator
by means of the manual indicator, load indicator, and
check-stop indicator, respectively. These three indi-
cators are off when the CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock is
not affected by the state of any CPU.

Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

e The stop key is activated while the CPU is in the
operating state.

* The CPU accepts a stop or stop-and-store-status
order specified by a SIGNAL PROCESSOR
instruction addressed to this CPU while it is in
the operating state.

e The CPU has finished the execution of a unit of
operation initiated by performing the start func-
tion with the rate control set to the instruction-
step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at the
end of the current unit of operation. When the wait-
state bit of the PSW is one, the transition takes place
immediately, provided no interruptions are pending
for which the CPU is enabled. In the case of inter-
ruptible instructions, the amount of data processed in
a unit of operation depends on the particular instruc-
tion and may depend on the model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions occur
while the CPU is still in the operating state. They
cause the old PSW to be stored and the new PSW to
be fetched before the stopped state is entered. While
the CPU is in the stopped state, interruption condi-
tions remain pending.

The CPU is also placed in the stopped state when:
e CPU reset is completed. However, when the

reset operation is performed as part of initial pro-
gram loading for this CPU, then the CPU is

4-2 z/Architecture Principles of Operation

placed in the load state and does not necessarily
enter the stopped state.

e An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in “Resets” on
page 4-49, and address comparison is described in
“Address-Compare Controls” on page 12-1.

If the CPU is in the stopped state when an INVALI-
DATE PAGE TABLE ENTRY instruction is executed
on another CPU in the configuration, the clearing of
TLB entries is completed before the CPU leaves the
stopped state.

Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see “Restart Interruption”
on page 6-49) occurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated with
that CPU is activated or (2) that CPU accepts the
start order specified by a SIGNAL PROCESSOR
instruction addressed to that CPU. The effect of per-
forming the start function is unpredictable when the
stopped state has been entered by means of a reset.

When the rate control is set to the process position
and the start function is performed, the CPU starts
operating at normal speed. When the rate control is
set to the instruction-step position and the wait-state
bit is zero, one instruction or, for interruptible instruc-
tions, one unit of operation is executed, and all pend-
ing allowed interruptions occur before the CPU
returns to the stopped state. When the rate control is
set to the instruction-step position and the wait-state
bit is one, the start function does not cause an
instruction to be executed, but all pending allowed
interruptions occur before the CPU returns to the
stopped state.

Load State

The CPU enters the load state when the load-normal
or load-clear key is activated. (See “Initial Program
Loading” on page 4-55. See also “Initial Program
Loading” on page 17-16.) This sets the architectural
mode to the ESA/390 mode. For ease of reference,

the additional elements of the description of the
ESA/390 load state are given below.

If a CCW-type initial-program-loading operation is
completed successfully, the CPU changes from the
load state to the operating state, provided the rate
control is set to the process position; if the rate con-
trol is set to the instruction-step position, the CPU
changes from the load state to the stopped state.

Check-Stop State

The check-stop state, which the CPU enters on cer-
tain types of machine malfunction, is described in
“Check-Stop State” on page 11-9. The CPU leaves
the check-stop state when CPU reset is performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program is
not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an instruc-
tion, the stop function is ineffective, and a reset
function has to be invoked instead. A similar situ-
ation occurs when an unending string of interrup-
tions results from a PSW with a PSW-format
error of the type that is recognized early, or from
a persistent interruption condition, such as one
due to the CPU timer.

3. Pending /O operations may be initiated, and
active 1/0O operations continue to suspension or
completion, after the CPU enters the stopped

state. The interruption conditions due to suspen-
sion or completion of I/O operations remain
pending when the CPU is in the stopped state.

Program-Status Word

The current program-status word (PSW) in the CPU
contains information required for the execution of the
currently active program. The PSW is 128 bits in
length and includes the instruction address, condition
code, and other control fields. In general, the PSW is
used to control instruction sequencing and to hold
and indicate much of the status of the CPU in relation
to the program currently being executed. Additional
control and status information is contained in control
registers and permanently assigned storage loca-
tions.

The status of the CPU can be changed by loading a
new PSW or part of a PSW.

Control is switched during an interruption of the CPU
by storing the current PSW, so as to preserve the
status of the CPU, and then loading a new PSW.

Execution of LOAD PSW or LOAD PSW
EXTENDED, or the successful conclusion of the ini-
tial-program-loading sequence, introduces a new
PSW. The instruction address is updated by sequen-
tial instruction execution and replaced by successful
branches. Other instructions are provided which
operate on a portion of the PSW. Figure 4-1 on
page 4-3 summarizes these instructions.

Address- Condition
Space Code and Basic Extended
System PSW Key Problem Control Program | Addressing | Addressing
Mask (PSW | (PSW Bits State (PSW Bits | Mask (PSW | Mode (PSW | Mode (PSW
Bits 0-7) 8-11) (PSW Bit 15) 16-17) Bits 18-23) Bit 32) Bit 31)
Instruction Saved| Set [Saved| Set [Saved| Set [Saved| Set [Saved| Set [Saved| Set [Saved| Set
BRANCH AND LINK - - - - - - - - |24AM| - |31AM| - - -
BRANCH AND SAVE - - - - - - - - - - | BAM | - - -
BRANCH AND SAVE AND SETMODE | - - - - - - - - - - | BAM | Yes' | Yes | Yes'
BRANCH AND SET AUTHORITY - - Yes | Yes | Yes | Yes - - - - |BAM?|BAM | - -
BRANCH AND SET MODE - - - - - - - - - - |BAM'| Yes' | Yes' | Yes'
BRANCH AND STACK Yes - Yes - Yes - Yes - Yes - |BAM®| - Yes -
BRANCH IN SUPSPACE GROUP - - - - - - - - - - |BAM'|BAM | - -
BRANCH RELATIVE AND SAVE - - - - - - - - - - |BAM | - - -

Figure 4-1. Operations on PSW Fields.

Chapter 4. Control

4-3

Address- Condition
Space Code and Basic Extended
System PSW Key Problem Control Program | Addressing | Addressing
Mask (PSW | (PSW Bits State (PSW Bits | Mask (PSW | Mode (PSW | Mode (PSW
Bits 0-7) 8-11) (PSW Bit 15) 16-17) Bits 18-23) Bit 32) Bit 31)
Instruction Saved| Set (Saved| Set |Saved| Set |Saved| Set |Saved| Set |Saved| Set Saved| Set
BRANCH RELATIVE AND SAVE LONG| - - - - - - - - - - | BAM| - - -
EXTRACT PSW Yes - Yes - Yes - Yes - Yes - Yes - Yes -
INSERT PROGRAM MASK - - - - - - - - | Yes | - - - - -
INSERT PSW KEY - - | Yes | - - - - - - - - - - -
INSERT ADDRESS SPACE CONTROL | - - - - - - | Yes | - - - - - - -
Basic PROGRAM CALL - - - - | Yes | Yes | - - - - | BAM | BAM | - -
Stacking PROGRAM CALL Yes - Yes | PKC| Yes | Yes | Yes | Yes | Yes - Yes | Yes | Yes | Yes
PROGRAM RETURN - | Yes'| - Yes - Yes - Yes - Yes - Yes - Yes
PROGRAM TRANSFER - - - - - [Yes’ | - - - - - |BAM| - -
RESUME PROGRAM - - - - - - - Yes - Yes - Yes - Yes
SET ADDRESS SPACE CONTROL - - - - - - - | Yes | - - - - - -
SET ADDRESSING MODE - - - - - - - - - - - | Yes - Yes
SET PROGRAM MASK - - - - - - - - - | Yes - - - -
SET PSW KEY FROM ADDRESS - - - | Yes | - - - - - - - - - -
SET SYSTEM MASK - | Yes | - - - - - - - - - - - -
STORE THEN AND SYSTEM MASK Yes |ANDs| - - - - - - - - - - - -
STORE THEN OR SYSTEM MASK Yes | ORs | - - - - - - - - - - - -
TRAP - - - - Yes - Yes | Yes | Yes - Yes | Yes | Yes -
Explanation:
- No.
! The action takes place only if the associated R field in the instruction is nonzero.
2 In the reduced-authority state, the action takes place only if the R; field in the instruction is nonzero.
s The action also takes place in the 64-bit addressing mode if the R, field in the instruction is zero.
¢ PROGRAM RETURN does not change the PER mask.
® PROGRAM TRANSFER does not change the problem-state bit from one to zero.
BAM The basic-addressing-mode bit is saved or set in the 24-bit or 31-bit addressing mode.
ANDs The logical AND of the immediate field in the instruction and the current system mask replaces the current system mask.
ORs The logical OR of the immediate field in the instruction and the current system mask replaces the current system mask.
PKC When the PSW-key-control bit, bit 131 of the entry-table entry, is zero, the PSW key remains unchanged. When the PSW-key-control bit is
one, the PSW key is set with the entry key, bits 136-139 of the entry-table entry.
24AM The condition code and program mask are saved in the 24-bit addressing mode.
31AM The basic-addressing-mode bit is saved in the 31-bit addressing mode.

Figure 4-1. Operations on PSW Fields.

A new or modified PSW becomes active (that is, the
information introduced into the current PSW
assumes control over the CPU) when the interruption
or the execution of an instruction that changes the
PSW is completed. The interruption for PER associ-
ated with an instruction that changes the PSW
occurs under control of the PER mask that is effec-
tive at the beginning of the operation.

4-4

z/Architecture Principles of Operation

Bits 0-7 of the PSW are collectively referred to as the
system mask.

Programming Note: A summary of the operations
which save or set the problem state, addressing
mode, and instruction address is contained in “Sub-
routine Linkage without the Linkage Stack” on
page 5-11.

Program-Status-Word Format

Prog. E
Mask OOOOOOOA

1213141516 18 20 24 31

O|X
012 5678

B
A

3233 63

OF{OOOTIE Key OM’WPAS CC

0000000000000000000000000000000

‘ Instruction Address ‘
64 95

‘ Instruction Address (Continued) ‘
96 127

Figure 4-2. PSW Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no PER
event can cause an interruption. When the bit is one,
interruptions are permitted, subject to the PER-
event-mask bits in control register 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruction
addresses used to access storage takes place.
When the bit is zero, DAT is off, and logical and
instruction addresses are treated as real addresses.
When the bit is one, DAT is on, and the dynamic-
address-translation mechanism is invoked.

I/O Mask (I0): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is zero, an
I/O interruption cannot occur. When the bit is one, I/0
interruptions are subject to the I/O-interruption sub-
class-mask bits in control register 6. When an 1/O-
interruption subclass-mask bit is zero, an I/O inter-
ruption for that I/O-interruption subclass cannot
occur; when the I/O-interruption subclass-mask bit is
one, an I/O interruption for that I/O-interruption sub-
class can occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is zero,
an external interruption cannot occur. When the bit is
one, an external interruption is subject to the corre-
sponding external subclass-mask bits in control reg-
ister 0; when the subclass-mask bit is zero,
conditions associated with the subclass cannot

cause an interruption; when the subclass-mask bit is
one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for stor-
age references by the CPU. If the reference is sub-
ject to key-controlled protection, the PSW key is
matched with a storage key when information is
stored or when information is fetched from a location
that is protected against fetching. However, for one
of the operands of each of MOVE TO PRIMARY,
MOVE TO SECONDARY, MOVE WITH KEY, MOVE
WITH SOURCE KEY, and MOVE WITH DESTINA-
TION KEY, an access key specified as an operand is
used instead of the PSW key.

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine-
check conditions. When the bit is zero, a machine-
check interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage
and instruction-processing damage are permitted,
but interruptions due to other machine-check-sub-
class conditions are subject to the subclass-mask
bits in control register 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by the
CPU, but interruptions may take place. When bit 14
is zero, instruction fetching and execution occur in
the normal manner. The wait indicator is on when the
bit is one.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU is
in the supervisor state. In the supervisor state, all
instructions are valid. In the problem state, only those
instructions are valid that provide meaningful infor-
mation to the problem program and that cannot affect
system integrity; such instructions are called unprivi-
leged instructions. The instructions that are never
valid in the problem state are called privileged
instructions. When a CPU in the problem state
attempts to execute a privileged instruction, a privi-
leged-operation exception is recognized. Another
group of instructions, called semiprivileged instruc-
tions, are executed by a CPU in the problem state
only if specific authority tests are met; otherwise, a
privileged-operation exception or a special-operation
exception is recognized.

Address-Space Control (AS): Bits 16 and 17, in

conjunction with PSW bit 5, control the translation
mode. See “Translation Modes” on page 3-36.

Chapter 4. Control 4-5

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is set
to 0, 1, 2, or 3, depending on the result obtained in
executing certain instructions. Most arithmetic and
logical operations, as well as some other operations,
set the condition code. The instruction BRANCH ON
CONDITION can specify any selection of the condi-
tion-code values as a criterion for branching. A table
in Appendix C summarizes the condition-code values
that may be set for all instructions which set the con-
dition code of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program-Mask
Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 HFP exponent underflow
23 HFP significance

When the mask bit is one, the exception results in an
interruption. When the mask bit is zero, no interrup-
tion occurs. The setting of the HFP-exponent-under-
flow-mask bit or the HFP-significance-mask bit also
determines the manner in which the operation is
completed when the corresponding exception
occurs.

Extended Addressing Mode (EA): Bit 31 controls
the size of effective addresses and effective-address
generation in conjunction with bit 32, the basic-
addressing-mode bit. When bit 31 is zero, the
addressing mode is controlled by bit 32. When bits
31 and 32 are both one, 64-bit addressing is speci-
fied.

Basic Addressing Mode (BA): Bits 31 and 32
control the size of effective addresses and effective-
address generation. When bits 31 and 32 are both
zero, 24-bit addressing is specified. When bit 31 is
zero and bit 32 is one, 31-bit addressing is specified.
When bits 31 and 32 are both one, 64-bit addressing
is specified. Bit 31 one and bit 32 zero is an invalid
combination that causes a specification exception to
be recognized. The addressing mode does not con-
trol the size of PER addresses or of addresses used
to access DAT, ASN, dispatchable-unit-control, link-
age, entry, and trace tables or access lists or the link-
age stack. See “Address Generation” on page 5-8
and “Address Size and Wraparound” on page 3-5.

4-6 z/Architecture Principles of Operation

The control of the addressing mode by bits 31 and 32
of the PSW is summarized as follows:

PSW.31 | PSW.32 | Addressing Mode
0 0 24-bit
0 1 31-bit
1 1 64-bit

Instruction Address: Bits 64-127 of the PSW are
the instruction address. This address designates the
location of the leftmost byte of the next instruction to
be executed, unless the CPU is in the wait state (bit
14 of the PSW is one).

Bit positions 0, 2-4, 24-30, and 33-63 are unassigned
and must contain zeros. A specification exception is
recognized when these bit positions do not contain
Zeros.

When bits 31 and 32 of the PSW specify the 24-bit
addressing mode, bits 64-103 of the instruction
address must be zeros, or, when bits 31 and 32
specify the 31-bit mode, bits 64-96 must be zeros.
Otherwise, a specification exception is recognized. A
specification exception is also recognized when bit
31 is one and bit 32 is zero or when bit position 12
does not contain a zero.

LOAD PSW EXTENDED has a 16-byte second oper-
and. The instruction loads the operand unchanged
and without examination as the current PSW.

LOAD PSW has an eight-byte second operand. The
operand is treated as an ESA/390 PSW, except that
bit 31 (the z/Architecture extended-addressing-mode
bit) may be one.

[E Prog. E
OROOOTOX Key 1M'WPASCC Mask OOOOOOOA
012 5678 1213141516 18 20 24 31
B .

A Instruction Address

3233 63

Figure 4-3. ESA/390 PSW Format, Except Bit 31 Shown as
EA

Depending on the model, either LOAD PSW recog-
nizes a specification exception if bit 12 of its second
operand is not one or this error is indicated by an
early specification exception after the completion of
the execution of LOAD PSW. LOAD PSW loads bits
0-32 of its second operand, except with bit 12
inverted, and bits 33-63 of the operand as bits 0-32

and 97-127, respectively, of the current PSW, and it
sets bits 33-96 of the current PSW to zeros.

Control Registers

The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 64-bit control registers.

The LOAD CONTROL (LCTLG) instruction causes all
control-register bit positions within those registers
designated by the instruction to be loaded from stor-
age. The LOAD CONTROL (LCTL) instruction loads
only bit positions 32-63 of the control registers, and
bits 0-31 of the registers remain unchanged. The
instructions BRANCH AND SET AUTHORITY,
BRANCH AND STACK, BRANCH IN SUBSPACE
GROUP, EXTRACT AND SET EXTENDED
AUTHORITY, LOAD ADDRESS SPACE PARAME-
TERS, PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, PROGRAM TRANSFER
WITH INSTANCE, SET SECONDARY ASN, and
SET SECONDARY ASN WITH INSTANCE, provide
specialized functions to place information into certain
control-register bit positions.

Information loaded into the control registers becomes
active (that is, assumes control over the system) at
the completion of the instruction that causes the
information to be loaded.

At the time the registers are loaded, the information
is not checked for exceptions, such as an address
designating an unavailable or protected location. The
validity of the information is checked and the excep-
tions, if any, are indicated at the time the information
is used.

The STORE CONTROL (STCTG) instruction causes
the contents of all control-register bit positions, within
those registers designated by the instruction, to be
placed in storage. The STORE CONTROL (STCTL)
instruction places the contents of bit positions 32-63
of the control registers in storage, and bits 0-31 of the
registers are ignored. The instructions EXTRACT
AND SET EXTENDED AUTHORITY, EXTRACT
PRIMARY ASN, EXTRACT PRIMARY ASN AND
INSTANCE, EXTRACT SECONDARY ASN,
EXTRACT SECONDARY ASN AND INSTANCE, and
PROGRAM CALL provide specialized functions to
obtain information from certain control-register bit
positions.

Only the general structure of the control registers is
described here; the definition of a particular control-
register bit position appears in the description of the
facility with which the position is associated.
Figure 4-4 on page 4-7 shows the control-register bit
positions which are assigned and the initial values of
the positions upon execution of initial CPU reset. All
control-register bit positions not listed in the figure
are initialized to zero.

Programming Notes:

1. The detailed definition of a particular control-reg-
ister bit position can be located by referring to the
entry “control-register assignment” in the Index.

2. To ensure that existing programs operate cor-
rectly if and when new facilities using additional
control-register bit positions are installed, the
program should load zeros in unassigned posi-
tions.

Control Initial
Register | Bits Name of Field Associated with Value
0 32 |TRACE TOD-clock control Tracing 0
0 33 |SSM-suppression control SET SYSTEM MASK 0

Figure 4-4. Assignment of Control-Register Fields (Part 1 of 3)

Chapter 4. Control 4-7

Control Initial
Register | Bits Name of Field Associated with Value

0 34 |TOD-clock-sync control TOD clock 0
0 35 |Low-address-protection control Low-address-protection 0
0 36 |Extraction-authority control Instruction authorization 0
0 37 |Secondary-space control Instruction authorization 0
0 38 |Fetch-protection-override control Key-controlled protection 0
0 39 |Storage-protection-override control Key-controlled protection 0
0 40 |Enhanced-DAT-enablement control Dynamic address translation

0 44 |ASN-and-LX-reuse control Instruction authorization 0
0 45 | AFP-register control Floating point 0
0 48 |Malfunction-alert subclass mask External interruptions 0
0 49 |Emergency-signal subclass mask External interruptions 0
0 50 |External-call subclass mask External interruptions 0
0 52 |Clock-comparator subclass mask External interruptions 0
0 53 |CPU-timer subclass mask External interruptions 0
0 54 | Service-signal subclass mask External interruptions 0
0 56 |Unused’ 1
0 57 |Interrupt-key subclass mask External interruptions 1
0 58 |Unused’ 1
0 59 |Timing-alert subclass mask External interruptions 0
0 61 |Crypto control Cryptography 0
1 0-51 |Primary region-table origin® Dynamic address translation 0
1 0-51 |Primary segment-table origin® Dynamic address translation 0
1 0-51 |Primary real-space token origin® Dynamic address translation 0
1 54 |Primary subspace-group control Subspace groups 0
1 55 |Primary private-space control Dynamic address translation 0
1 56 |Primary storage-alteration-event Program-event recording control | 0
1 57 |Primary space-switch-event control Program interruptions 0
1 58 |Primary real-space control Dynamic address translation 0
1 60-61 |Primary designation-type control® Dynamic address translation 0
1 62-63 | Primary table length® Dynamic address translation 0
2 33-57 | Dispatchable-unit-control-table origin Access-register translation 0
3 0-31 |Secondary ASN-second-table-entry instance number Instruction authorization 0
3 32-47 |PSW-key mask Instruction authorization 0
3 48-63 |Secondary ASN Address spaces 0
4 0-31 |Primary ASN-second-table-entry instance number Instruction authorization 0
4 32-47 | Authorization index Instruction authorization 0
4 48-63 |Primary ASN Address spaces 0
5 33-57 |Primary-ASN-second-table-entry origin Access-register translation 0
6 32-39 (I/O-interruption subclass mask I/O interruptions 0
7 0-51 |Secondary region-table origin® Dynamic address translation 0
7 0-51 |Secondary segment-table origin® Dynamic address translation 0
7 0-51 |Secondary real-space token origin® Dynamic address translation 0
7 54 |Secondary subspace-group control Subspace groups 0
7 55 |Secondary private-space control Dynamic address translation 0
7 56 |Secondary storage-alteration-event Program-event recording control | 0
7 58 |Secondary real-space control Dynamic address translation 0
7 60-61 |Secondary designation-type control® Dynamic address translation 0
7 62-63 | Secondary table Iength3 Dynamic address translation 0
8 32-47 |Extended authorization index Access-register translation 0
8 48-63 | Monitor masks MONITOR CALL 0

Figure 4-4. Assignment of Control-Register Fields (Part 2 of 3)

4-8 z/Architecture Principles of Operation

Control Initial

Register | Bits Name of Field Associated with Value
9 32 |Successful-branching-event mask Program-event recording 0
9 33 |Instruction-fetching-event mask Program-event recording 0
9 34 |Storage-alteration-event mask Program-event recording 0
9 36 |Store-using-real-address-event mask Program-event recording 0
9 39 |Instruction-fetching-nullification-event mask Program-event recording 0
9 40 |Branch-address control Program-event recording 0
9 42 |Storage-alteration-space control Program-event recording 0
10 0-63 |PER starting address Program-event recording 0
11 0-63 |PER ending address Program-event recording 0
12 0 |Branch-trace control Tracing 0
12 1 |[Mode-trace control Tracing 0
12 2-61 |Trace-entry address Tracing 0
12 62 |ASN-trace control Tracing 0
12 63 |Explicit-trace control Tracing 0
13 0-51 |Home region-table origin® Dynamic address translation 0
13 0-51 |Home segment-table origin® Dynamic address translation 0
13 0-51 |Home real-space token origin2 Dynamic address translation 0
13 55 |Home private-space control Dynamic address translation 0
13 56 |Home storage-alteration-event Program-event recording control | 0
13 57 |Home space-switch-event control Program interruptions 0
13 58 |Home real-space control Dynamic address translation 0
13 60-61 |Home designation-type control® Dynamic address translation 0
13 62-63 |Home table length® Dynamic address translation 0
14 32 |Unused' 1
14 33 |Unused' 1
14 35 |Channel-report-pending subclass mask I/0O machine-check handling 0
14 36 |Recovery subclass mask Machine-check handling 0
14 37 |Degradation subclass mask Machine-check handling 0
14 38 |External-damage subclass mask Machine-check handling 1
14 39 |Warning subclass mask Machine-check handling 0
14 42 | TOD-clock-control-override control TOD clock 0
14 44 | ASN-translation control Instruction authorization 0
14 45-63 | ASN-first-table origin ASN translation 0
15 0-60 |Linkage-stack-entry address Linkage-stack operations 0

Explanation:

The fields not listed are unassigned. The initial value for all unlisted control-register bit positions is zero.

This bit is not used but is initialized to one for consistency with the System/370 definition.

4

The address-space-control element (ASCE) in the control register has one of three formats, depending on bit 58
of the register, the real-space control, and bits 60 and 61 of the register, the designation-type control. When bit
58 is zero, the ASCE is a region-table designation if bits 60 and 61 are 11, 10, or 01 binary, or it is a segment-
table designation if bits 60 and 61 are 00 binary. When bit 58 is one, the ASCE is a real-space designation. Bits
0-51 are the region-table origin, the segment-table origin or the real-space token origin, depending on whether
the ASCE is a region-table designation, a segment-table designation, or a real-space designation, respectively.

Bits 60-63 are assigned when the ASCE in the control register is a region-table designation or a segment-table
designation.

This bit is used only in a control register of a virtual machine; in a real machine, this bit is reserved.

Figure 4-4. Assignment of Control-Register Fields (Part 3 of 3)

Tracing

Tracing assists in the determination of system prob-
lems by providing an ongoing record in storage of

Chapter 4. Control 4-9

significant events. Tracing consists of four separately
controllable functions which cause entries to be
made in a trace table: branch tracing, ASN tracing,
mode tracing, and explicit tracing. Branch tracing,
ASN tracing, and mode tracing together are referred
to as implicit tracing.

When branch tracing is on, a branch trace entry is
made in the trace table for each execution of certain
branch instructions when they cause branching. The
branch address is placed in the trace entry. The trace
entry also indicates the following about the address-
ing mode in effect after branching and the branch
address: (1) the CPU is in the 24-bit addressing
mode, (2) the CPU either is in the 31-bit addressing
mode or is in the 64-bit addressing mode and bits
0-32 of the branch address are all zeros, or (3) the
CPU is in the 64-bit addressing mode and bits 0-32
of the branch address are not all zeros. The branch
instructions that are traced are:

* BRANCH AND LINK (BALR only) when the R,
field is not zero

» BRANCH AND SAVE (BASR only) when the R,
field is not zero

e BRANCH AND SAVE AND SET MODE when the
R, field is not zero

e BRANCH AND SET AUTHORITY

» BRANCH AND STACK when the R, field is not
zero

e BRANCH IN SUBSPACE GROUP

¢ RESUME PROGRAM

e TRAP

However, a branch trace entry is made for BRANCH
IN SUBSPACE GROUP only if ASN tracing is not on.

If both branch tracing and mode tracing are on and
BRANCH AND SAVE AND SET MODE or RESUME
PROGRAM changes the extended-addressing-mode
bit, PSW bit 31, a mode-switching-branch trace entry
is made instead of a branch trace entry.

When ASN tracing is on, an entry named the same
as the instruction is made in the trace table for each
execution of the following instructions:

BRANCH IN SUBSPACE GROUP
PROGRAM CALL

PROGRAM RETURN
PROGRAM TRANSFER

SET SECONDARY ASN

4-10

z/Architecture Principles of Operation

However, the entry for PROGRAM RETURN is made
only when PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by PROGRAM
CALL, not when PROGRAM RETURN unstacks an
entry formed by BRANCH AND STACK.

When ASN tracing is on, a PROGRAM TRANSFER
trace entry is also made for each execution of PRO-
GRAM TRANSFER WITH INSTANCE, and a SET
SECONDARY ASN trace entry is also made for each
execution of SET SECONDARY ASN WITH
INSTANCE. In either case, a bit in the trace entry
indicates whether the entry was made due to the
without-instance or the with-instance instruction.

If both ASN tracing and mode tracing are on and
PROGRAM CALL uses a 20-bit PC number and
changes PSW bit 31, first a PROGRAM CALL trace
entry is made, and then a mode-switch trace entry is
made. In this case except when PROGRAM CALL
uses a 32-bit PC number, only a PROGRAM CALL
trace entry is made since it indicates the old and new
values of the extended-addressing-mode bit, PSW
bit 31. A 32-bit PC number may be used if the ASN-
and-LX-reuse facility is installed and is enabled by a
one value of the ASN-and-LX-reuse control, bit 44 of
control register 0.

Mode tracing records a switch from a basic (24-bit or
31-bit) addressing mode to the extended (64-bit)
addressing mode or from the extended mode to a
basic mode.

When mode tracing is on, a mode-switch trace entry
is made in the trace table for each execution of the
following instructions if the execution changes PSW
bit 31:

BRANCH AND SAVE AND SET MODE
BRANCH AND SET MODE
PROGRAM CALL

PROGRAM RETURN

RESUME PROGRAM

SET ADDRESSING MODE

However, a mode-switch trace entry is not made for
PROGRAM RETURN if ASN tracing is on and PRO-
GRAM RETURN unstacks a state entry formed by
PROGRAM CALL; a PROGRAM RETURN trace
entry is made instead, and it contains information
about PSW bit 31.

BRANCH AND SAVE AND SET MODE and
RESUME PROGRAM cause trace entries to be

made as follows: a branch trace entry if only branch
tracing is on, a mode-switching-branch trace entry if
both branch tracing and mode tracing are on, or a
mode-switch trace entry if only mode tracing is on.

The trace entries produced by implicit tracing are
summarized in Figure 4-5.

When explicit tracing is on, execution of TRACE
(TRACE or TRACG) causes an entry to be made in
the trace table. The entry for TRACE (TRACE)
includes bits 16-63 from the TOD clock, the second
operand of the TRACE instruction, and bits 32-63 of
a range of general registers. The entry for TRACE
(TRACG) is the same except that it includes bits 0-79
from the TOD clock and bits 0-63 of a range of gen-
eral registers.

[OR.
& AND.
B

entry is not made.

MSB
only if the branch is taken.

Implicit Tracing Enabled
Branch Branch ASN
Branch ASN Mode and ASN |and Mode |and Mode All
Instruction Trace Entries Made
BAKR B - - B B - B
BALR B - - B B - B
BASR B - - B B - B
BASSM B - MS B B | MSB MS B | MSB
BSA B - - B B - B
BSG B BSG - BSG B BSG BSG
BSM - - MS - MS - MS
PC-20 - PC MS PC MS PC & MS | PC & MS
PC-32 - PC MS PC MS PC PC
PR-b - - MS - MS MS MS
PR-pc - PR MS PR MS PR PR
PT or PTI - PT - PT - PT PT
RP B - MS B B | MSB MS B | MSB
SSAR or - SSAR - SSAR - SSAR SSAR
SSAIR
SAM24/31/64 - - MS - MS MS MS
TRAP2/4 B - - B B - B
Explanation:
- None.

-20 The case when PROGRAM CALL uses a 20-bit PC number.

-32 The case when PROGRAM CALL uses a 32-bit PC number.

-b The case when PROGRAM RETURN unstacks a branch state entry.

-pc The case when PROGRAM RETURN unstacks a program-call state entry.

Branch trace entry. Made only if the branch is taken and a mode-switching-branch trace

MS Mode-switch trace entry. Made only if PSW bit 31 is changed.
Mode-switching-branch trace entry. Made only if PSW bit 31 is changed (which can occur

Figure 4-5. Summary of Implicit Tracing

Control-Register Allocation

The information to control tracing is contained in con-

trol register 12 and has the following format:

‘B‘M‘ Trace-Entry Address ‘
012 31
‘ Trace-Entry Address (Continued) ‘A‘E‘
32 62 63

Chapter 4. Control 4-11

Branch-Trace-Control Bit (B): Bit 0 of control reg-
ister 12 controls whether branch tracing is turned on
or off. If the bit is zero, branch tracing is off; if the bit
is one, branch tracing is on.

Mode-Trace-Control Bit (M): Bit 1 of control regis-
ter 12 controls whether mode tracing is turned on or
off. If the bit is zero, mode tracing is off; if the bit is
one, mode tracing is on.

Trace-Entry Address: Bits 2-61 of control register
12, with two zero bits appended on the left and two
on the right, form the real address of the next trace
entry to be made.

ASN-Trace-Control Bit (A): Bit 62 of control regis-
ter 12 controls whether ASN tracing is turned on or
off. If the bit is zero, ASN tracing is off; if the bit is
one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 63 of control
register 12 controls whether explicit tracing is turned
on or off. If the bit is zero, explicit tracing is off, which
causes the TRACE instruction to be executed as a
no-operation; if the bit is one, the execution of the
TRACE instruction creates an entry in the trace table,
except that no entry is made when bit 0 of the second
operand of the TRACE instruction is one.

Trace Entries

Trace entries are of nine types, with most types hav-
ing more than one detailed format. The types and
numbers of formats are as follows:

Branch (three formats)

BRANCH IN SUBSPACE GROUP (two formats)
Mode switch (three formats)

Mode-switching branch (three formats)
PROGRAM CALL (seven formats)

PROGRAM RETURN (nine formats)
PROGRAM TRANSFER (three formats)

SET SECONDARY ASN (one format)

TRACE (two formats)

Format-1 and format-2 PROGRAM CALL trace
entries are made if the ASN-and-LX reuse facility is
not enabled. Entries of formats 3-7 are made if the
facility is enabled.

The PROGRAM TRANSFER trace entry is also
made for PROGRAM TRANSFER WITH INSTANCE,
and the SET SECONDARY ASN trace entry is also
made for SET SECONDARY ASN WITH INSTANCE.
In either case, bit 15 (N) of the entry is one if the
entry was made because of execution of the with-
instance instruction.

The entries are shown in Figure 4-6. In that figure,
each entry is labeled with “Fn,” indicating a format
number, to allow references to each format within a
trace-entry type. Also, “Branch,” referring to the mne-
monic of an instruction that causes a branch trace
entry, refers to BAKR, BALR, BASR, BASSM, BSA,
or BSG.

Figure 4-7 on page 4-19 lists the trace entries in
ascending order of values in bit fields that identify the
entries.

F1 Branch (Branch, RP, or TRAP2/4 when Resulting Mode |s 24-Bit)

0000000 0\ Bits 40-63 of Branch Address \
0 8 31

F2 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 31-Bit, or when Resulting PSW Bit 31 is One (See

Note) and Bits 0-32 of Branch Address Are All Zeros)

\ 1 \ Bits 33-63 of Branch Address \
01 31

Figure 4-6. Trace Entries (Part 1 of 7)

4-12

z/Architecture Principles of Operation

F3 Branch (Branch, RP, or TRAP2/4 when Resulting PSW Bit 31 Is One (See Note) and Bits 0-32 of Branch Address
Are Not All Zeros)

\0 101001 0\1 10 0\ All Zeros \ Bits 0-31 of Branch Address
0 8 12 32 63

\ Bits 32-63 of Branch Address \
64 95

F1 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 24-Bit or 31-Bit Mode)

0100000 1‘P‘ Bits 9-31 of ALET ‘A‘ Bits 33-63 of Branch Address
0 8 9 3233 63

F2 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 64-Bit Mode)
\o 100001 O‘P‘ Bits 9-31 of ALET \ Bits 0-31 of Branch Address

0 8 32 63

\ Bits 32-63 of Branch Address \
64 95

F1 Mode Switch (BASSM, BSM, PC, PR, RP, or SAM64 from 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 is
One (See Note))

01010001f0011] All Zeros Al Updated Instruction Address
0 8 12 3233 63

F2 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode to 24-Bit or 31-Bit Mode when
Bits 0-31 of Updated Instruction Address Are All Zeros)

01010001f0010] All Zeros | Bits 32-63 of Updated Instruction Address
0 8 12 32 63

F3 Mode Switch (BASSM, BSM, PC, PR, or RP from 64-Bit Mode to 24-Bit or 31-Bit Mode when Bits 0-31 of Updated
Instruction Address Are Not All Zeros)

lo1010010f0110] All Zeros | Bits 0-31 of Updated Instruction Address
0 8 12 32 63

‘ Bits 32-63 of Updated Instruction Address ‘
64 95

F1 Mode-Switching Branch (BASSM or RP from 64-Bit Mode to 24-Bit or 31-Bit Mode)

0101000 1\1 01 o\ All Zeros \A\ Branch Address
0 8 12 3233 63

Figure 4-6. Trace Entries (Part 2 of 7)

Chapter 4. Control

4-13

F2 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note)
and Bits 0-31 of Branch Address Are All Zeros)

0101000 1\1 01 1\ All Zeros \ Bits 32-63 of Branch Address \
0 8 12 32 63

F3 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note)
and Bits 0-31 of Branch Address Are Not All Zeros)

\o 101001 0\1 11 1\ All Zeros \ Bits 0-31 of Branch Address \

0 8 12 32 63

\ Bits 32-63 of Branch Address \
64 95

F1 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Not Enabled)

00100001 PKS(;\)/,V PC Number A Bits 33-62 of Return Address P

0 8 12 3233 63

F2 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Not Enabled)

00100010 PKS(;\)/,V PC Number Bits 0-31 of Return Address

0 8 12 32 63
Bits 32-62 of Branch Address ‘P‘

64 95

F3 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled and
20-Bit PC Number is Used)

00100001 PKi\;V 0 Bits 1-19 of 20-Bit PC Number A Bits 33-62 of Return Address P

0 8 1213 3233 63

F4 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled and 20-Bit
PC Number Is Used)

00100010 PKSe\;IV 0 Bits 1-19 of 20-Bit PC Number Bits 0-31 of Return Address

0 8 1213 32 63
Bits 32-62 of Return Address Pl

64 95

Figure 4-6. Trace Entries (Part 3 of 7)

4-14 z/Architecture Principles of Operation

F5 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled and
32-Bit PC Number is Used)

00100010 PKSG\;V 100|E All Zeros A Bits 33-62 of Return Address P

0 8 12 15 16 3233 63

32-Bit PC Number
64 95

F6 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled, 32-Bit PC
Number Is Used, and Bits 0-31 of Return Address Are All Zeros)

00100010 PKSG\;V 101|E All Zeros Bits 32-62 of Return Address P

0 8 12 1516 32 63
32-Bit PC Number

64 95

F7 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled, 32-Bit PC
Number Is Used, and Bits 0-31 of Return Address Are Not All Zeros)

00100011 PKSG\;V 111|E All Zeros Bits 0-31 of Return Address

0 8 12 1516 32 63
Bits 32-62 of Return Address \P\ 32-Bit PC Number

64 95 96 127

F1 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting Mode Is 24-Bit or 31-Bit)

00110010 PKS:;V 0000 New PASN A Bits 33-62 of Return Address P
0 8 12 16 32 63
‘A‘ Bits 33-63 of Updated Instruction Address

64 65 95

F2 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are All Zeros and Resulting
Mode Is 24-Bit or 31-Bit)
PSW

00110010 Key 0010 New PASN A Bits 33-62 of Return Address P

0 8 12 16 3233 63

Bits 32-63 of Updated Instruction Address
64 95

Figure 4-6. Trace Entries (Part 4 of 7)

Chapter 4. Control

4-15

F3 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are Not All Zeros and
Resulting Mode Is 24-Bit or 31-Bit)

00110011 PKSG\;V 0011 New PASN A Bits 33-62 of Return Address P

0 8 12 16 3233 63

Updated Instruction Address
64 127

F4 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of
Return Address Are All Zeros)

00110010 PKSe\;,V 1000 New PASN Bits 32-62 of Return Address P
0 8 12 16 32 63
‘A‘ Bits 33-63 of Updated Instruction Address

64 65 95

F5 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are All Zeros)

00110010 PKSG\;V 1010 New PASN Bits 32-62 of Return Address P

0 8 12 16 32 63

Bits 32-63 of Updated Instruction Address

64 95

F6 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are Not All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are All Zeros)

00110011 PKSe\;,V 1011 New PASN Bits 32-62 of Return Address P
0 8 12 16 32 63
Updated Instruction Address
64 127

Figure 4-6. Trace Entries (Part 5 of 7)

4-16 z/Architecture Principles of Operation

F7 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of

Return Address Are Not All Zeros)

00110011

PSW
Key

1100

New PASN

Bits 0-31 of Return Address

0

12 16

32

63

Bits 32-62 of Return Address

Pl

Updated Instruction Address

64

95 96 97

127

F8 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are Not All Zeros)

00110011

PSW
Key

1110

New PASN

Bits 0-31 of Return Address

0

12 16

32

63

Bits 32-62 of Return Address

Bits 32-63 of Updated Instruction Address

64

95

96

127

F9 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are Not All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are Not All Zeros)

00110100

PSW
Key

1111

New PASN

Bits 0-31 of Return Address

0

12 16

32

63

Bits 32-62 of Return Address

Bits 0-31 of Updated Instruction Address

64

Bits 32-63 of Updated Instruction Address

128

159

F1 PROGRAM TRANSFER (WITH INSTANCE if N Is One) (in 24-Bit or 31-Bit Mode)

127

00110001

PSW
Key

000|N

New PASN

Bits 32-63 of R, before

0

12 1516

32

63

F2 PROGRAM TRANSFER (WITH INSTANCE if N Is One) (in 64-Bit Mode when Bits 0-31 of R, Are All Zeros)

00110001

PSW
Key

100|N

New PASN

Bits 32-63 of R, before

0

Figure 4-6. Trace Entries (Part 6 of 7)

12 1516

32

63

Chapter 4. Control

417

F3 PROGRAM TRANSFER (WITH INSTANCE if N Is One) (in 64-Bit Mode when Bits 0-31 of R, Are Not All Zeros)

00110010 PKSe\;IV 110N New PASN Bits 0-31 of R, before

0 8 12 1516 32 63
Bits 32-63 of R, before |

64 95

F1 SET SECONDARY ASN (WITH INSTANCE if N Is One)

00010000‘0000000‘N‘ New SASN \

0 8 15 16 31

F1 TRACE (TRACE)

\01 1 1\ N \oooooooo\ TOD-Clock Bits 16-63 \

0 4 8 16 63

/

| TRACE Operand (R1)- (R3) |

64 9% / 95 + 32(N+1)

F2 TRACE (TRACG)

\o 11 1\ N \1 000000 0\ TOD-Clock Bits 0-47 \

0 4 8 16 63

| TOD-Clock Bits 48-79 | TRACE Operand |

64 96 127
/

| (R,)- (R) |

128

127 + B4(N+1)

Note: The terminology “when Resulting PSW Bit 31 Is One” is used instead of “when Resulting Mode Is 64-Bit” because, if the resulting PSW
bit 32 is zero, an early specification exception will be recognized. PROGRAM RETURN can set PSW bit 31 to one and bit 32 to zero.

Figure 4-6. Trace Entries (Part 7 of 7)

The fields in the trace entries are defined as follows.
The fields are described in the order in which they
first appear in Figure 4-6 on page 4-12.

Branch Address: The branch address is the
address of the next instruction to be executed when
the branch is taken. In a branch trace entry made
when the 24-bit addressing mode is in effect after
branching (a format-1 entry), bit positions 8-31 con-
tain bits 40-63 of the branch address. When the
31-bit addressing mode is in effect after branching or

4-18

z/Architecture Principles of Operation

PSW bit 31 is one after branching and bits 0-32 of
the branch address are all zeros, bit positions 1-31 of
the trace entry (format 2) contain bits 33-63 of the
branch address. When PSW bit 31 is one after
branching and bits 0-32 of the branch address are
not all zeros, bit positions 32-95 of the trace entry
(format 3), contain bits 0-63 of the branch address.

In a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit addressing
mode, bit positions 33-63 of the trace entry (format 1)
contain bits 33-63 of the branch address, or, in the
64-bit addressing mode, bit positions 32-95 of the

Trace-Entry Bits Trace Entry
0-7 8-11 | 12-15 Type Format

00000000 Branch 1
00010000 000N | SET SECONDARY ASN 1
00100001 PROGRAM CALL 1
00100010 PROGRAM CALL 2!
00100001 0 PROGRAM CALL 3'
00100010 0 PROGRAM CALL 4'
00100010 100E | PROGRAM CALL 5'
00100010 101E | PROGRAM CALL 6'
00100011 111E | PROGRAM CALL 7'
00110001 000N | PROGRAM TRANSFER 1
00110001 100N | PROGRAM TRANSFER 2
00110010 0000 | PROGRAM RETURN 1
00110010 0010 | PROGRAM RETURN 2
00110010 1000 | PROGRAM RETURN 4
00110010 1010 | PROGRAM RETURN 5
00110010 110N | PROGRAM TRANSFER 3
00110011 0011 | PROGRAM RETURN 3
00110011 1011 | PROGRAM RETURN 6
00110011 1100 | PROGRAM RETURN 7
00110011 1110 | PROGRAM RETURN 8
00110100 1111 | PROGRAM RETURN 9
01000001 BRANCH IN SUBSPACE GROUP| 1
01000010 BRANCH IN SUBSPACE GROUP| 2
01010001 | 0010 Mode Switch 2
01010001 | 0011 Mode Switch 1
01010001 | 1010 Mode-Switching Branch 1
01010001 | 1011 Mode-Switching Branch 2
01010010 | 0110 Mode-Switch 3
01010010 | 1100 Branch 3
01010010 | 1111 Mode-Switching Branch 3
0111 0 TRACE 1
0111 1 TRACE 2
1 Branch 2
Explanation:

1 Format-1 and format-2 entries are made when

the ASN-and-LX reuse facility is not enabled.
Entries of formats 3-7 are made when the
facility is enabled.

E Indicates, when one, that the extended-
addressing-mode bit, PSW bit 31, was set to
one.

N Indicates, when one, that a PROGRAM

TRANSFER entry was made because of
PROGRAM TRANSFER WITH INSTANCE or a
SET SECONDARY ASN entry was made
because of SET SECONDARY ASN WITH
INSTANCE.

Figure 4-7. Trace Entries Arranged by Identifying Bits

trace entry (format 2) contain bits 0-63 of the branch
address.

In a mode-switching-branch trace entry made on a
switch from the 64-bit addressing mode to the 24-bit
or 31-bit addressing mode, bit positions 33-63 of the
entry (format 1) contain bits 33-63 of the branch
address; or, on a switch from PSW bit 31 being off to
the bit being on, bit positions 32-63 of the entry (for-
mat 2) contain bits 32-63 of the branch address if bits
0-31 of the branch address are zeros, or bits 32-95 of
the entry (format 3) contain bits 0-63 of the branch
address if bits 0-31 of the branch address are not all
Zeros.

Primary-List Bit (P) and Bits 9-31 of ALET: Bit
position 8 of a BRANCH IN SUBSPACE GROUP
trace entry contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the R, field of the instruction. Bit positions 9-31 of the
trace entry contain bits 9-31 of the ALET.

Basic-Addressing-Mode Bit (A): Bit position 32 of
a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit addressing
mode (a format-1 entry) contains the basic-address-
ing-mode bit that replaces bit 32 of the PSW.

Bit position 32 of a mode-switch trace entry that indi-
cates a switch from PSW bit 31 being off to the bit
being on (a format-1 entry) contains the value of
PSW bit 32 that existed before the mode-switch
operation.

Bit position 32 of a mode-switching-branch trace
entry that indicates a switch from the 64-bit address-
ing mode to the 24-bit or 31-bit addressing mode (a
format-1 entry) contains the value that replaces PSW
bit 32.

Bit position 32 of a PROGRAM CALL trace entry
made on execution in the 24-bit or 31-bit addressing
mode (regardless of the resulting addressing mode)
(a format-1 entry) contains the basic-addressing-
mode bit, bit 32, from the current PSW.

Bit position 32 of a PROGRAM RETURN trace entry
made when the resulting addressing mode is the
24-bit or 31-bit mode (a format-1, format-2, or format-
3 entry) contains the basic-addressing-mode bit that
replaces bit 32 of the PSW.

Bit position 64 of a PROGRAM RETURN trace entry
made in the 24-bit or 31-bit addressing mode when
the return address occupies only one word in the
entry, (a format-1 or format-4 entry), contains the
value of PSW bit 32 that existed before the PRO-

Chapter 4. Control 4-19

GRAM RETURN operation. When the return address
occupies two words (a format-7 entry), bit position 96
contains that value of PSW bit 32.

Updated Instruction Address: Bit positions 33-63
of a mode-switch trace entry that indicates a switch
from PSW bit 31 being off to the bit being on (a for-
mat-1 entry) contains bits 33-63 of the updated
instruction address in the PSW (bits 97-127 of the
PSW) before that address is replaced, if it is
replaced, by the mode-switch operation. Bit positions
32-63 of a mode-switch trace entry (format 2) that
indicates a switch from the 64-bit addressing mode to
the 24-bit or 31-bit addressing mode contains bits
32-63 of the updated instruction address in the PSW
(bits 96-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch opera-
tion, if bits 0-31 of the updated instruction address
are zeros; or bit positions 32-95 of the trace entry
(format 3) contain bits 0-63 of that updated instruc-
tion address (bits 64-127 of the PSW) if bits 0-31 of
the address are not all zeros.

The following description of a PROGRAM RETURN
trace entry applies when the return address in the
entry occupies only one word in the entry. Bit posi-
tions 65-95 of the trace entry made on execution in
the 24-bit or 31-bit addressing mode (a format-1 or
format-4 entry) contain bits 33-63 of the updated
instruction address in the PSW (bits 97-127 of the
PSW) before that address is replaced from the link-
age-stack state entry; or, when the execution is in the
64-bit addressing mode, bit positions 64-95 of the
trace entry (format 2 or 5) contain bits 32-63 of that
updated instruction address (bits 96-127 of the PSW)
if bits 0-31 of the address are zeros, or bit positions
64-127 of the trace entry (format 3 or 6) contain bits
0-63 of that updated instruction address (bits 64-127
of the PSW) if bits 0-31 of the address are not all
zeros. If the return address in the PROGRAM
RETURN trace entry occupies two words, the
updated instruction address in the entry is moved
one word to the right in the entry (formats 7-9).

PSW Key: Bit positions 8-11 of a PROGRAM
CALL, PROGRAM TRANSFER, or PROGRAM
RETURN trace entry contain the PSW key from the
current PSW.

PC Number: Bit positions 12-31 of a PROGRAM
CALL trace entry of format 1-4 contain the value of
the rightmost 20 bits of the second-operand address.
Bit positions 64-95 of a format-5 or format-6 PRO-
GRAM CALL trace entry, or bit positions 96-127 of a

4-20

z/Architecture Principles of Operation

format-7 entry, contain the value of the rightmost 32
bits of the second-operand address.

Return Address: Bit positions 33-62 of a PRO-
GRAM CALL trace entry made on execution in the
24-bit or 31-bit addressing mode (a format-1, format-
3, or format-5 entry) contain bits 33-62 of the
updated instruction address in the PSW (bits 97-126
of the PSW) before that address is replaced from the
entry-table entry; or, when the execution is in the
64-bit addressing mode, bit positions 32-94 of the
trace entry (format 2, 4, or 7) contain bits 0-62 of that
updated instruction address (bits 64-126 of the
PSW), or, when bits 0-31 of the address are all
zeros, bit positions 32-62 of the trace entry (format 6)
contain bits 32-62 of the address.

Extended-Addressing-Mode Bit (E): Bit position
15 of a PROGRAM CALL trace entry made using a
32-bit PC number (a format-5, format-6, or format-7
entry) contains the extended-addressing-mode bit
that replaces bit 31 of the PSW.

Bit positions 33-62 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or for-
mat-3 entry) contain bits 33-62 of the instruction
address that replaces bits 64-127 of the PSW; or,
when the resulting PSW bit 31 is one (which causes
the addressing mode be the 64-bit mode unless the
resulting PSW bit 32 is zero), bit positions 32-62 of
the trace entry (formats 4-6) contain bits 32-62 of that
instruction address if bits 0-31 of the address are
zeros, or bit positions 32-94 of the trace entry (for-
mats 7-9) contain bits 0-62 of that instruction address
if bits 0-31 of the address are not all zeros.

Problem-State Bit (P): Bit position 63 of a PRO-
GRAM CALL trace entry made on execution in the
24-bit or 31-bit addressing mode (regardless of the
resulting mode) (a format-1, format-3, format-5, or
format-6 entry), or bit position 95 of the entry (format
2, 4, or 7) made on execution in the 64-bit addressing
mode, contains the problem-state bit from the current
PSW.

Bit position 63 of a PROGRAM RETURN trace entry
made when the resulting addressing mode is the
24-bit or 31-bit mode (a format-1, format-2, or format-
3 entry) or when the resulting PSW bit 31 is one and
bits 0-31 of the return address are zeros (formats
4-6) contains the problem-state bit that replaces bit
15 of the PSW. Bit position 95 of a PROGRAM
RETURN trace entry made when the resulting PSW

bit 31 is one and bits 0-31 of the return address are
not all zeros (formats 7-9) contains that problem-
state bit.

New PASN: Bit positions 16-31 a PROGRAM
TRANSFER trace entry contain the new PASN
(which may be zero) specified in bit positions 48-63
of general register R;.

Bit positions 16-31 of a PROGRAM RETURN trace
entry contain the new PASN that is restored from the
linkage-stack state entry.

Bits 32-63 of R, before: Bit positions 32-63 of a
PROGRAM TRANSFER trace entry made on execu-
tion in the 24-bit or 31-bit addressing mode (a format-
1 entry) contain bits 32-63 of the general register
designated by the R, field of the instruction. (Bits 32
and 33-62 of that register replace bits 32 and 97-126,
respectively, of the PSW. Bit 63 of the register
replaces the problem-state bit in the PSW.) When
PROGRAM TRANSFER or PROGRAM TRANSFER
WITH INSTANCE is executed in the 64-bit address-
ing mode, bit positions 32-63 of the trace entry (for-
mat 2) contain bits 32-63 of the R, general register if
bits 0-31 of the register are zeros, or bit positions
32-95 of the trace entry (format 3) contain bits 0-63 of
the register if bits 0-31 of the register are not all
Zeros.

New SASN: Bit positions 16-31 of a SET SEC-
ONDARY ASN trace entry contain the ASN value
loaded into control register 3 by the instruction.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one gen-
eral register are provided in the trace entry, to 15,
meaning the contents of all 16 general registers are
provided.

TOD-Clock Bits 16-63 or 0-79: When the store-
clock-fast facility is not installed, or when the TRACE
TOD-clock control in bit 32 of control register 0 is
zero, bits 16-63 of the trace entry for TRACE
(TRACE) are obtained from bit positions 16-63 of the
TOD clock, as would be provided by a STORE
CLOCK instruction executed at the time the TRACE
instruction was executed. When the store-clock-fast
facility is installed and the TRACE TOD-clock control
in bit 32 of control register zero is one, bits 16-63 of

the trace entry for TRACE (TRACE) are obtained
from bit positions 16-63 of the TOD clock, as would
be provided by a STORE CLOCK FAST instruction
executed at the time the TRACE instruction was exe-
cuted.

Bits 16-95 of the trace entry for TRACE (TRACG) are
obtained from bit positions 0-79 of the TOD clock, as
would be provided by a STORE CLOCK EXTENDED
instruction executed at the time the TRACE instruc-
tion was executed. See programming note 2 for infor-
mation about a carry from bit position 0 of the TOD
clock.

TRACE Operand: When the store-clock-fast facil-
ity is not installed, or when the TRACE TOD-clock
control in bit 32 of control register 0 is zero, bit posi-
tions 64-95 of the trace entry for TRACE (TRACE)
and bit positions 96-127 of the trace entry for TRACE
(TRACG) contain a copy of the 32 bits of the second
operand of the TRACE instruction for which the entry
is made.

When the store-clock-fast facility is installed and the
TRACE TOD-clock control in bit 32 of control register
0 is one, the trace-operand field in the trace entry is
formed as follows.

* Bit positions 64-71 and 80-95 of the trace entry
for TRACE (TRACE) and bit positions 96-103
and 112-127 of the trace entry for TRACE
(TRACG) contain a copy of bits 0-7 and 16-31,
respectively, of the second operand of the
TRACE instruction for which the entry is made.

e The contents of bit positions 72-79 of the trace
entry for TRACE (TRACE) and the contents of bit
positions 104-111 for TRACE (TRACG) are set to
a model-dependent value.

(R,)-(R;): The four-byte fields starting with bit 96 of
the trace entry for TRACE (TRACE) contain the con-
tents of bit positions 32-63 of the general registers
whose range is specified by the R, and R; fields of
the TRACE instruction. The general registers are
stored in ascending order of register numbers, start-
ing with general register R, and continuing up to and
including general register R,, with general register O
following general register 15. The eight-byte fields
starting with bit 128 of the trace entry for TRACE
(TRACG) similarly contain the contents of bit posi-
tions 0-63 of those registers.

Chapter 4. Control 4-21

Programming Notes:

1. The size of the trace entry for TRACE (TRACE)
in units of words is 3 + (N + 1). The maximum
size of an entry is 19 words, or 76 bytes. For
TRACE (TRACG), the size in units of words is
4 + 2(N + 1), and the maximum size is 36 words,
or 144 bytes.

2. At some time in the future, the TOD clock on new
models will have a leftmost extension so that
there can be a carry from bit position 0 of the
clock into the extension; see programming note
14 on page 4-42. On these models, the rightmost
bit of the extension will be stored in bit position
15 of the TRACE (TRACG) trace entry. It may be
desired to have programs that process TRACE
(TRACG) trace entries take this future develop-
ment into account.

Operation

When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate type and
format is made. The real address of the trace entry is
formed by appending two zero bits on the left and
two on the right to the value in bit positions 2-61 of
control register 12. The address in control register 12
is subsequently increased by the size of the entry
created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry to
be propagated into bit position 51 (that is, if the trace-
entry address would be in the next 4K-byte block). If
this would be the case for the entry to be made, a
trace-table exception is recognized and the operation
is nullified. When PROGRAM CALL is to form both a
PROGRAM CALL trace entry and a mode-switch
trace entry, neither entry is stored, and a trace-table
exception is recognized, if either entry would cause a
carry into bit position 51. For the purpose of recog-
nizing the trace-table exception in the case of a
TRACE instruction, the maximum length of 76
(TRACE) or 144 (TRACG) bytes is used instead of
the actual length.

The storing of a trace entry is not subject to key-con-
trolled protection (nor, since the trace-entry address
is real, is it subject to DAT protection), but it is subject
to low-address protection; that is, if the address of

4-22

z/Architecture Principles of Operation

the trace entry due to be created is in the range
0-511 or 4096-4607 and bit 35 of control register 0 is
one, a protection exception is recognized, and
instruction execution is suppressed. If the address of
a trace entry is invalid, an addressing exception is
recognized, and instruction execution is suppressed.

The three exceptions associated with storing a trace
entry (addressing, protection, and trace table) are
collectively referred to as trace exceptions.

If a program interruption takes place for a condition
which is not a trace-exception condition and for
which execution of an instruction is not completed, it
is unpredictable whether part or all of any trace entry
due to be made for such an interrupted instruction is
stored in the trace table. Thus, for a condition which
would ordinarily cause nullification or suppression of
instruction execution, storage locations may have
been altered beginning at the location designated by
control register 12 and extending up to the length of
the entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH AND
STACK and ASN tracing is on, trace exceptions may
be recognized, even though a trace entry is not made
and no part of a trace entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed by
other CPUs and by channel programs, the contents
of a byte of a trace entry may appear to change more
than once before completion of the instruction for
which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed. However, it is
unpredictable whether or not a store into a trace-
table entry from which a subsequent instruction is
fetched will be observed by the CPU that performed
the store. Additionally, when the store-clock-fast
facility is installed and the TRACE TOD-clock control
in bit 32 of control register 0 is one, it is unpredictable
whether explicit tracing causes serialization to be
performed.

Program-Event Recording

The purpose of PER is to assist in debugging pro-
grams. It permits the program to be alerted to the fol-
lowing types of events:

* Execution of a successful branch instruction. The
option is provided of having an event occur only
when the branch-target location is within the des-
ignated storage area.

* Fetching of an instruction from the designated
storage area.

* Alteration of the contents of the designated stor-
age area. The option is provided of having an
event occur only when the storage area is within
designated address spaces.

e Execution of the STORE USING REAL
ADDRESS instruction.

The program can selectively specify that one or more
of the above types of events be recognized, except
that the event for STORE USING REAL ADDRESS
can be specified only along with the storage-alter-
ation event. The information concerning a PER event
is provided to the program by means of a program
interruption, with the cause of the interruption being
identified in the interruption code.

PER Instruction-Fetching
Nullification

The PER-3 facility may be available on a model
implementing z/Architecture and is available only in
the z/Architecture architectural mode. When this
facility is installed, bit 39 of control register 9, when
one, specifies that PER instruction-fetching events
force nullification. Bit 39 is effective for this purpose
only when bit 33 of control register 9, the instruction-
fetching PER-event mask bit, is also one. When bit
33 is zero, PER instruction-fetching events are not
recognized, and bit 39 has no effect. When the
PER-3 facility is not installed or bit 39 is zero, PER
instruction-fetching events do not force nullification.
A PER instruction-fetching event that forces nullifica-
tion is referred to as a PER instruction-fetching nullifi-
cation event. A PER event that does not force
nullification is referred to as a PER basic event.

When the PER-3 facility is installed, and bit 39 is one,
the interruption caused by a PER instruction-fetching
event occurs before the fetched instruction is exe-
cuted, the PER instruction-fetching nullification event
is indicated, no other PER events and no other pro-
gram interruption conditions are reported, and execu-
tion of the instruction is nullified. When the PER-3
facility is not installed, or bit 39 is zero, nullification is
not forced, the PER instruction-fetching basic event
is indicated, other PER events and other program
interruption conditions may be concurrently reported,
and the execution of the instruction may be com-
pleted, terminated, suppressed, or nullified. In the
absence of other conditions, the interruption caused
by the PER instruction-fetching basic event occurs
after execution of the fetched instruction, or units of
operation thereof, are completed.

Control-Register Allocation and
Address-Space-Control Element

The information for controlling PER resides in control
registers 9, 10, and 11 and the address-space-con-
trol element. The information in the control registers
has the following format:

Control Register 9

0 31

e B |
32 40 42 63

Control Register 10

‘ Starting Address ‘
0 31

‘ Starting Address (continued) ‘

32 63
Control Register 11

‘ Ending Address ‘
0 31

‘ Ending Address (continued) ‘
32 63

PER-Event Masks (EM): Bits 32-34 and 36 specify
which types of events are recognized. When the

Chapter 4. Control 4-23

PER-3 facility is installed, bit 39 of the PER-event
masks is also used. The bits are assigned as follows:

Bit 32:
Bit 33:
Bit 34:
Bit 36:

Successful-branching event
Instruction-fetching event

Storage-alteration event
Store-using-real-address event (bit 34 must
be one also)

Instruction-fetching nullification event (bit 33
must also be one)

Bit 39:

Bits 32-34 and bit 36, when ones, specify that the
corresponding types of events be recognized. How-
ever, bit 36 is effective for this purpose only when bit
34 is also one. When bit 34 is one, the storage-alter-
ation event is recognized. When bits 34 and 36 are
ones, both the storage-alteration event and the store-
using-real-address event are recognized. When a bit
is zero, the corresponding type of event is not recog-
nized. When bit 34 is zero, both the storage-alter-
ation event and the store-using-real-address event
are not recognized.

When the PER-3 facility is not installed, bit 39 is
ignored. Bit 39 is effective only when bit 33 is also
one. When bit 33 is one, and the PER-3 facility is
installed, and bit 39 is one, the PER instruction-fetch-
ing nullification event is recognized. When bit 33 is
one and bit 39 is zero (or the PER-3 facility is not
installed) the PER instruction-fetching basic event is
recognized. When bit 33 is zero, neither the PER
instruction-fetching basic event nor the PER instruc-
tion-fetching nullification event is recognized.

Branch-Address Control (B): Bit 40 of control
register 9 specifies, when one, that successful-
branching events occur only for branches that are to
a location within the designated storage area. When
bit 40 is zero, successful branching events occur
regardless of the branch-target address.

Storage-Alteration-Space Control (S): Bit 42 of
control register 9 specifies, when one, that storage-
alteration events occur as a result of references to
the designated storage area only within designated
address spaces. An address space is designated as
one for which storage-alteration events occur by
means of the storage-alteration-event bit in the
address-space-control element that is used to trans-
late references to the address space. Bit 42 is
ignored when DAT is off. When DAT is off or bit 42 is
zero, storage-alteration events are not restricted to
occurring for only particular address spaces.

4-24

z/Architecture Principles of Operation

PER Starting Address: Bits 0-63 of control regis-
ter 10 are the address of the beginning of the desig-
nated storage area.

PER Ending Address: Bits 0-63 of control regis-
ter 11 are the address of the end of the designated
storage area.

The address-space-control element has one of the
following formats:

Region-Table or Segment-Table Designation (R=0)

‘ Region-Table or Segment-Table Origin ‘
0 31
[elPlsixfr] [oT|TL|

54 5556 57 58 59 60 62 63

‘ Region- or Segment-Table Origin (cont.) ‘
32 52
Real-Space Designation (R=1)

‘ Real-Space Token Origin ‘
0 31
[olP[s]x[r] |
54 55 56 57 58 59 63

‘ Real-Space Token Origin (cont.) ‘
32 52

Storage-Alteration-Event Bit (S): When the stor-
age-alteration-space control in control register 9 is
one, bit 56 of the address-space control element
specifies, when one, that the address space defined
by the address-space-control element is one for
which storage-alteration events can occur. Bit 56 is
examined when the address-space-control element
is used to perform dynamic-address translation for a
storage-operand store reference. The address-
space-control element may be the PASCE, SASCE,
or HASCE in control register 1, 7, or 13, respectively,
or it may be obtained from an ASN-second-table
entry during access-register translation. Instead of
being obtained from an ASN-second-table entry in
main storage, bit 56 may be obtained from an ASN-
second-table entry in the ART-lookaside buffer
(ALB). Bit 56 is ignored when the storage-alteration-
space control is zero.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the PER
facility, programs that do not use it should dis-
able the CPU for PER events by setting either
the PER mask in the PSW to zero or the PER-
event masks in control register 9 to zero, or both.

No degradation due to PER occurs when either
of these fields is zero.

2. Some degradation may be experienced on some
models every time control registers 9, 10, and 11
are loaded, even when the CPU is disabled for
PER events (see the programming note under
“Storage-Area Designation”).

3. Enabling the CPU for PER instruction-fetching
nullification may be used to determine the state
of the CPU before execution of any instruction
within the storage area designated by control
registers 10 and 11. The instruction nullified
could be the first instruction after a successful
branch, after LOAD PSW, or after LOAD PSW
EXTENDED; or it could be the target of an exe-
cute-type instruction or the leftmost instruction in
the storage area and accessed in the process of
sequential execution. After recording the desired
information, in order to allow the CPU to execute
this instruction, either the CPU must be disabled
for instruction-fetching nullification or control reg-
isters 10 and 11 must be changed to designate a
different storage area. This can be contrasted to
enabling for PER successful branching within the
same storage area, which causes a PER event
to be reported only in the first case mentioned
above, but does not require special action to
continue.

Operation

PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask and a particular PER-
event mask bit are all ones, the CPU is enabled for
the corresponding type of event; otherwise, it is dis-
abled. However, the CPU is enabled for the store-
using-real-address event only when the storage-
alteration mask bit and the store-using-real-address
mask bit are both one.

The CPU is enabled for the PER instruction-fetching
nullification event only when the PER-3 facility is
installed, and then only when the instruction-fetching-
event mask bit, the instruction-fetching-nullification-
event mask bit, and the PER mask are all ones. An
interruption due to a PER instruction-fetching nullifi-
cation event causes the execution of the instruction
causing the event to be nullified.

An interruption due to a PER basic event normally
occurs after the execution of the instruction responsi-
ble for the event. The occurrence of the event does

not affect the execution of the instruction, which may
be completed, partially completed, terminated, sup-
pressed, or nullified. However, recognition of a stor-
age-alteration event causes no more than 4K bytes
to be stored beginning with the byte that caused the
event, and this may result in partial completion of an
interruptible instruction.

An interruption for an instruction-fetching nullification
event occurs before the instruction responsible for
the event is executed, and the operation is nullified.

When the CPU is disabled for a particular PER event
at the time it occurs, either by the PER mask in the
PSW or by the masks in control register 9, the event
is not recognized.

A change to the PER mask in the PSW or to the PER
control fields in control registers 9, 10, and 11 affects
PER starting with the execution of the immediately
following instruction. Thus, if, as a result of the
change, an instruction-fetching nullification event
applies to the immediately following instruction, exe-
cution of that instruction will be nullified and the
instruction-fetching nullification event reported.

A change to the storage-alteration-event bit in an
address-space-control element in control register 1,
7, or 13 also affects PER starting with the execution
of the immediately following instruction. A change to
the storage-alteration-event bit in an address-space-
control element that may be obtained, during access-
register translation, from an ASN-second-table entry
in either main storage or the ALB does not necessar-
ily have an immediate, if any, effect on PER. How-
ever, PER is affected immediately after either
PURGE ALB or COMPARE AND SWAP AND
PURGE that purges the ALB is executed.

If a PER basic event occurs during the execution of
an instruction which changes the CPU from being
enabled to being disabled for that type of event, that
PER event is recognized.

PER basic events may be recognized in a trial exe-
cution of an instruction, and subsequently the
instruction, DAT-table entries, and operands may be
refetched for the actual execution. If any refetched
field was modified by another CPU or by a channel
program between the trial execution and the actual
execution, it is unpredictable whether the PER
events indicated are for the trial or the actual execu-
tion.

Chapter 4. Control 4-25

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause

A program interruption for PER sets bit 8 of the inter-
ruption code to one and places identifying informa-
tion in real storage locations 150-159 and in location
161 if the PER event is a storage-alteration event.
Additional information is provided by means of the
instruction address in the program old PSW and the
ILC. The information stored in real locations 150-159
and 161 has the following format:

Locations 150-151:
PERCode | ATMID [Al]

0 8 14 15

Locations 152-159:

\ PER Address \
0 31

‘ PER Address (continued) ‘
32 63

Location 161:

000 0| PAID |

0 4 7

PER Code: The occurrence of PER events is indi-
cated by ones in bit positions 0-2, 4 and 7. The bit
position in the PER code for a particular type of event
is 32 less than the bit position for that event in the
PER-event-mask field in control register 9, except
that a one in bit position 2 and a zero in bit position 4
of location 150 indicate a storage-alteration event,
while ones in bit positions 2 and 4 indicate a store-
using-real-address event. When a program interrup-
tion occurs, more than one type of PER basic event
can be concurrently indicated. Additionally, if another
program-interruption condition exists, the interruption
code for the program interruption may indicate both
the PER basic events and the other condition.

When a program interruption occurs for a PER
instruction-fetching nullification event, bits 1 and 7
are set to one in the PER code. No other PER events
are concurrently indicated.

4-26

z/Architecture Principles of Operation

Addressing-and-Translation-Mode Identification
(ATMID): During a program interruption when a
PER event is indicated, bits 31, 32, 5, 16, and 17 of
the PSW at the beginning of the execution of the
instruction that caused the event may be stored in bit
positions 8 and 10-13, respectively, of real locations
150-151. If bits 31, 32, 5, 16, and 17 are stored, then
a one bit is stored in bit position 9 of locations
150-151. If bits 31, 32, 5, 16, and 17 are not stored,
then zero bits are stored in bit positions 8-13 of loca-
tions 150-151.

Bits 8-13 of real locations 150-151 are named the
addressing-an